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Abstract

In this paper, in designing improved HfO,(Hafnium oxide) based nonvolatile memory for NOR Flash application,
SOS(Silicon On Sapphire) based TAHOS(TaN/AlLOy/HfO»/Si0y/Si) structure is proposed as substitutable candidate for
replacing conventional SOI(Silicon On Insulator) based TAHOS structure. By utilizing the magnificent thermal conductivity
of sapphire(AlOs) materials, we tried to improve self-heating effect and retention issue that the TAHOS structure has
suffered. In the case of proposed SOS based TAHOS structure, it has been demonstrated that self-heating effect can be
significantly improved since the sapphire material effectively acts as a heat sink. Furthermore, it has been shown that this
suppression of self-heating effect can suppresses the electrons in charge trap layer (CTL) from obtaining thermal energy,
thereby retention characteristic can be improved.
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Fig. 1. (a) Conventional SOI based TAHOS structure and
(b) the proposed SOS based TAHOS structure.
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Tablel. Used device parameters and their corresponding
values.
Symbol Model Parameter Value Unit
Lgate Gate length 30
T ehannel Channel thickness 50
Teix | Blocking oxide thickness 6
Tero CTL thickness 6 nm
Trai | Tunneling oxide thickenss 3
Tsor SOI substrate thickness 300
Tsos | SOS substrate thickness 300
ko2 | HfO, thermal conductivity 0.49
Ksiop | S10, thermal conductivity 14
ks |Silicon thermal conductivity 75 W/(m=K)
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