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Abstract—The motivation for driving semiconductor 
devices can be found in the development of advanced 
computers which can contribute to the betterment in 
our daily lives. The contribution has been largely 
made by semiconductor logic devices traveling the 
pavements identified as technology nodes for device 
shrinkage that enables high-speed and low-power 
operations. Lighter and faster processors are the 
everlasting goals in electronics and computer science, 
and have been concerned with logic technologies. 
However, the vast amount of data that should be dealt 
are consistently requiring an innovative way out of 
the conventional serial data communication and 
processing. Data need to be processed in a shorter 
time but the irreducibilities in logic switching time, 
data propagation time in metallic interconnection 
accompanying RC delay, and the time amount spent 
in the serial communication between logic and 
memory units should be quenched. It is quite hard to 
control the former two factors which are largely 
determined by physical limits and fabrication 
technology ones in recent days but the latter still has 
room for reduction by novel devices and architectures 
specifically designed for maximizing the parallelism 
in data processing and communication. The 
semiconductor memories let aside the advancements 
in processor technologies now is being moved to the 
center of renovation toward the future computers in 
the ultimate architecture. In this review, the roles and 

requirements of semiconductor memories for 
memory-oriented processors are investigated in the 
highlights of applications in the neuromorphic system 
and processing-in-memory (PIM) architectures.    
 
Index Terms—Semiconductor devices, semiconductor 
memories, data processing, computer architecture, 
neuromorphic system, processing-in-memory (PIM), 
memory processing unit (MemPU)    

I. INTRODUCTION 

The actual effective speed of a computer system is 
determined by speed of memory, and further, that of 
communication between processing and memory units. It 
is an undoubted fact that the intrinsic gate delay governs 
system speed most fundamentally, but we are not living 
in the era in which the processing speed of a central 
processing unit (CPU) is determined by the speed of 
transistor switching although the great deal of effort has 
been dedicated to shrinkage of transistor for higher 
switching speed and low power consumption. For being 
capable of accommodating the gigantic amount of data, 
stronger parallelism has been consistently required. 
Parallel computing, high-performance computing (HPC), 
distributed computing, and grid computing can be 
thought as the effort for increasing the system speed by 
physical segmentations of computers over space, 
operating in the time-division manner [1-4], which have 
been prevalent. In recent times, such computers are 
shrinkun into a chip with the highly scaled parallelism, 
which can be easily found in the contemporary multi-
core CPUs and many-core graphic processing units 
(GPUs) [5-8]. However, these technologies are highly 
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dependent on scaling technology of transistors and what 
crucially matters is the logic operation speed, not taking 
the actual system speed determined at the level of 
massive nonvolatile memories into the serious 
consideration. The computing performances have been 
referred as the result of semiconductor logic technology 
but the importance of memory technologies is getting 
larger and larger as the high-performance computers and 
hardware-driven artificial intelligence (AI) become more 
big-data-driven and require expedited communication 
between the processor core and the ultra-high-density 
memory area [9]. In this review, volatile and nonvolatile 
memory devices making up the most fundamental 
functional cells in the advanced computer architectures 
are surveyed in the highlights of their applications in the 
hardware-driven neuromorphic systems and processing-
in-memory (PIM).  

Semiconductor memories can be categorized by two 
criteria as schematically shown in Fig. 1: (i) whether it is 
charge-storage type or resistance-chancing type and (ii) 
whether it is volatile or nonvoltaile. Great majority of Si 
memory devices are found in the charge (or potential) 
storage type including static random-access memory 
(SRAM), dynamic random-access memory (DRAM), and 
flash memory. Although floating-gate (FG) structure had 
the great majority in the past flash memory technologies 
and it can be still found in the microcontroller units 
(MCUs) embedding the FG flash memories owing to its 
perfect Si processing compatibility, the predominence is 
taken by the charge-trap flash (CTF) technology in recent 
times. In the charge storage memory regime, the device 
evolutions have been progressed with a relatively high 
emphasis on novel device stucturing since the base 

materials that can be accommodated in the fabrication 
facility for mass chip production are not unlimited and 
the Si processing technologies are highly matured. On 
the other hand, in the regime of resistance change 
memories, the mateirals are being sought without ceasing 
and the development and optimization of process 
architecture are of parallel concern. It needs to be 
clarified that resistance change type and resistive-
switching random access memory (RRAM) do not have 
the same definition but they have different set and subset 
relations as clearly grasped by Fig. 1. The resistive 
change memory refers to all the memories in which the 
state changes can be altered by the change in resistance, 
or equivalently, that in conductance. Phase-change 
random-access memory (PRAM), ferroelectric RAM 
(FRAM), magnetic RAM (MRAM), and resistive-
switching RAM (RRAM) belong to resistance change 
memory technology.  

The following sections have been organized covering 
all the hiararchies: neuromorphic applications based on 
charge storage volatile memories, SRAM and DRAM, 
are surveyed in Chapter II. Those with nonvolatile 
memories are investigated in Chapter III, which is more 
specifically divided into Chapter III. 1 for charge storage 
CTF and Chapter III. 2 for resistance change memories 
including all of PRAM, FRAM, MRAM, and RRAM, 
respectively. 

II. VOLATILE MEMORY CELLS FOR 

NEUROMORPHIC APPLICATIONS 

Neuromorphic computing is a new way of computing 
mimicking the behaviors of nervous system. The most 

 

Fig. 1. Hierarchy in semiconductor memories for the neuromorphic and PIM applications. 
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fundamental nervous behavior is broken down into the 
multiplication-and-accumulation (MAC) operations that   
take place between neurons as schematically shown in 
the upper part in Fig. 2. Neuromorphic computing is a 
forward step by which AI can be implemented in a more 
physical way so that the MAC operations can be carried 
out with higher volume and energy efficiencies [10]. For 
this goal, more specifically designed hardwares - 
integrated circuits and devices - are necessitated as 
shown in the lower part in Fig. 2. The early AI was 
realized in the highly algorithm-intensive manner, in 
which the volume and energy efficiencies were not 
substantially considered [11]. More hardware-oriented 
state-of-the-art neuromorphic chips have been 
incessantly released with the full Si CMOS processing 
compatibility [12-14], where the synapses were made of 
static random-access memories (SRAMs). AI has been 
primarily led by software and is pursuing machine 
learning as can be schematically shown in Fig. 3. Deep 
neural network (DNN) is a widely admitted way to 
realize machine leaning that essentially requires big data. 
Thus, to be a successful hardware neuromorphic system, 
the synaptic device or cell needs to equip higher 
scalability toward a high-density synapse array. However, 

the bulky SRAM composed of 6 transistors is not 
strategic to practically achieve the goal [13, 14], and as 
the result, applications can be quite limited [15]. 
Although it has been rarely reported until recent date in 
comparison with SRAM, dynamic random-access 
memory (DRAM) is another volatile meory cell that can 
be also utilized for the hardware-driven neuromorphic 
system as the synapse with higher cell scalability. It was 
reported that DRAM can be used in the accelerator for 
either convolutional neural network (CNN) or recurrent 
neural network (RNN) due to the area and cost 
effectiveness of DRAM [16]. Even in case of the 
architecture of a CNN accelerator employing DRAM, the 
DRAM domain is not used for synaptic computing but 
for providing the compressed feature maps and kernal as 

 

Fig. 2. Artificial intelligence and neuromorphic computing. 
 

Fig. 3. Background and orientation of the artificial intelligence.
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 1, FEBRUARY, 2022 33 

 

schematically shown in Fig. 4 [16]. It has not been 
explicitly addressed but the reason that DRAM has not 
been actively adopted for the neuromorphic computing 
can be found from the fact that the periodic refresh 
operations are required in the conventional DRAM cell. 

Neuromorphic computing architectures are specifically 
designed for higher energy efficiency and superb 
parallelism in big data processing. The loss of time and 
data bandwidth in the DRAM synapse array can be 
seriously concerned. Thus, if DRAM cells can be 
adopted in the neuromorphic applications as the synaptic 
units, the issue of data retainability should be resolved. A 
novel DRAM cell featuring two independent MOSFET 
devices, without capacitor, has been recently invented 
and presented [17, 18]. The first MOSFET takes charge 
of learning operations (potentiation and depression) and 
the second one takes charge of inference only, by which 
non-destructive inference operation and substantially 
increased data retention are warranted. Further, the 
invented DRAM cell can be operated in the dual modes: 
one for the stand-alone DRAM and the other for 
neuromorphic application depending on the magnitude of 
voltage pulse for program and erase operations. Fig. 5 
demonstrates the output curves of the second MOSFET 

where the inference operation takes place. The 
functionality as a synapse cell with plausibly linear 
weight modulation capability in terms of number of 
learning pulses is clearly demonstrated in Fig. 5. 

Although the usefulness and functions of the short-
term memory (STM) in the hardware neuromorphic 
system can be differed from those in the biological 
nervous system [19, 20], STM is essential in design and 
realization of time-series neuromorphic system based on 
RNN [21-23]. Thus, the STM-oriented neuromorphic 
systems can be surely realized by volatile memories 
including SRAM and DRAM as surveyed above, and 

 

Fig. 4. Architecture of a CNN accelerator with DRAM [16]. 
 

 

Fig. 5. Synaptic operation of a novel DRAM cell [17]. 
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higher data capacity, energy efficiency, the time-
invariant weight retainability can be realized by 
introducing the nonvolatile memory synapses as will be 
reviewed in the subsequent sections.  

III. NONVOLATILE MEMORY CELLS FOR 

NEUROMORPHIC APPLICATIONS 

1. Charge-trap Memory Synaptic Devices 
 
All-circuit AI chip in Fig. 2 can be categorized into 

neuromorphic system since area and energy efficiencies 
are enhanced, in comparison with the software-driven AI, 
by the approach of more specific hardware design. Since 
the all-circuit AI chip has the Si processing compatibility, 
it had a higher chance to reach chip production earlier. 
However, a functional synaptic unit is composed of 
plural transistors so that there is much room to increase 
the area and energy efficiencies. It should be correct to 
express memory cells when it comes to SRAM or 
DRAM, the volatile memories, rather than memory 
devices. However, when dealing with nonvolatile 
memories, a single device can function as one synapse. 
In consequence, the nonvolatile memory synapse has 
higher device scalability and array density. Also, 
nonvolatile memories are superior to voltaile ones with 
regard to energy efficiency when they weave the synapse 
arrays for neuromorphic systems. An early single-device 
nonvolatile synapse was invented in the structure of 
floating body with charge-trap layer [24]. The Si-based 
floating-body synaptic transistor (SFST) is capable of 
both STM and long-term memory (LTM) functions. 
SFST can be specifically understood as the combination 
of one-transistor (1T) DRAM and charge-trap flash 
(CTF) memory for short- and long-term memories, 
respectively. Fig. 6 schematically shows the principles 
for the synaptic operations. The electron-hole pairs are 
generated by hot-carrier-induced impact ionization. The 
electrons are drifted into the drain junction and the holes 
are accumunlated in the floating body. A recent research 
results show that diffusion has the predominance over 
drift and recombination in determining retention of data 
in 1T DRAM [25]. In other words, the accumulated holes 
in the p-type body vanish by extremely fast diffusion of 
holes into the source and drain junctions, unless the 
potentiation pulses are repeated with short enough 

intervals. By this accumulation and fast diffusion, 
threshold voltage of the SFST is temporarily elevated 
and comes back to the initial value, which realizes the 
STM. Repeated potentiation pulses increase the 
population of the holes accumulated in the floating body 
and the holes have higher probability to be injected into 
the charge-trap layer by tunneling. By the trapped holes, 
the threshold voltage becomes invariant if there is no 
intended depression (erase) operation. The SFST 
necessitates a floating body for realizing the STM 
function but the holes can be also temporarily stored by 
preparing other type of storage. Fig. 7(a) schematically 
shows the semi-floating-gate synaptic transistor (SFGST) 
which can be fabricated on the bulk Si wafers [26]. The 
potentiation takes place by band-to-band tunneling of 
holes from the channel into the semi-floating gate (SFG) 
of which one end is connected to the channel as shown in 
Fig. 7(b) and (c). STM is realized due to diffusion of the 
holes out of the SFG to the channel. It would be essential 

 

Fig. 6. Si-based floating-body synaptic transistor (SFST) [24].

 

Fig. 7. Device structure and potentiation process of semi-
floating-gate synaptic transistor (SFGST): (a) Aerial view of 
the SFGST and its circuit symbol representation; (b) Cross-
sectional view of the device; (c) Contour of hole current density 
during the potentiation through band-to-band tunneling [26]. 
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to realize high-density synaptic device array for 
processing massive data and vertical structuring can be a 
viable way of achieving the goal. Synaptic transistor with 
vertical channel can be designed as shown in Fig. 8(a), 
and further, a quantum well can be equipped for low-
power learning operation and effective STM [27, 28]. 
The potentiation is performed by band-to-band tunneling 
through SiGe with higher power efficiency as the 
simulation results in Fig. 8(b) and (c). 

The valence band offset (VBO) between SiGe and Si 
provides a quantum well for effective hole confinement 
for STM as shown in Fig. 9(a) and (b). Since the 
heterostructure quantum well acts as the floating body 
for holes, the synaptic transistor can be fabricated on the 
bulk Si wafers cost-effectively. By this structuring, both 
area and power efficiencies are obtained at the same time. 
Fig. 10 depicts the modulation of synaptic weight 

(electrical conductance) by the number of pulses in the 
learning processes of the charge-trap synapse (CTS) [28]. 
Although the perfect linearity in weight modulation does 
not have to be fulfulled for off-chip learning, higher 
weight linearity is undoubtedly beneficial since the 
burdens in the peripheral circuits and supporting 
softwares can be greatly lessened. Further, the perfect 
linearity needs to be pursued in the on-chip learning 
neuromorphic system with full autonomy. 

Nanowire synaptic transistor can be designed 

 

Fig. 8. Quantum-well charge-trap synaptic transistor (CTS): (a) 
Schematic of the device structure; (b) Tunneling rate in the 
channel direction investigated by device simulation; (c) change 
in energy-band diagram during a potentiation [28].  

 

Fig. 9. (a) Short-term memory functionality of CTS. Increase of 
the hole concentration in the whole SiGe layer with potentiation 
pulse number; (b) the decay in the absence of a pulse [28].  
 

 

Fig. 10. Highly linear conductance change of the CTS device 
with regard to number of learning pulses. The earlier 23 pulses 
are for potentiation and the latter ones are for depression [28]. 

 

Fig. 11. Device structure of core-shell dual-gate (CSDG) 
nanowire synaptic transistor: (a) Three-dimensional view. 
Cross-sectional views; (b) along; (c) across the channel [29]. 
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considering the geometrical similarity (Fig. 11(a)) with 
the three-dimensional vertical NAND (VNAND) 
products [29, 30]. The synaptic transistor is operated by 
core-shell dual gates (CSDG) and the charge-trap nitride 
layer is located on the shell gate side as schematically 
shown in Fig. 11(b) and (c). Voltages of large 
magnitudes are applied to the shell gate for potentiation 
and depression operations. The core gate assists the shell 
gate in learning operations, being applied with voltages 
of smaller magnitudes. Fig. 12(a) shows the weight 
modulation as a function of number of learning pulses. In 
order to obtain higher linearity, bias conditions for 
potentiation, depression, and inference need to be 
optimized. The synaptic weights obtained from the 
potentiation/depression data in Fig. 12(a) was used for 
off-chip training of a neural network in Fig. 12(b). In 
comparison with the purely software-based recognition 
accuracy of 92.3%, there are only marginal drops in 
accuracy as demonstrated in Fig. 12(c) and (d), which 
supports the merits of the CSDG synapse.  

 

2. Resistance-change Memory Synaptic Devices 
 
As reviewed in the previous section, charge-trap flash 

synapses have high Si processing compatibility and can 
be made capable of both STM and LTM. Although the 
function of STM can be differed from the original one in 
the biological system in many aspects, one of the 
common functions is to manage the entire system in the 
energy-efficient manner. In the electronic system, 
sustaining the stronger connectivity with a larger weight 
requires a larger energy consumption. Since stronger 

Fig. 12. Pattern recognition test of the CSDG nanowire 
synaptic transistor: (a) Modulation of synaptic weight in LTP 
and LTD characteristics of the CSDG device; (b) Schematic of 
the single-layer neural network made up of CSDG nanowire 
synaptic transistors for MNIST digit recognition. Digit 
recognition accuracy (%) as a functon of the number of training 
epochs at three different distinct depression voltages of the 
synaptic device for training with (c) 28 × 28; (d) 16 × 16 pixels. 
Insets of (c) and (d) show the MNIST images of digit “3” in the 
28 × 28 and 16 × 16 resolutions, respectively [29].  
 

 

Fig. 13. Phase-change memory (PCM) synapse array: (a) 
Schematics of 10 × 10 array and cell; (b) Optical microscope 
image of PCM cell array and TEM image of a single cell [31]. 

 

 

Fig. 14. 3D vertical ferroelectric HZO-based FTJ array 
characterization: (a) Schematic of high-density 3D vertical 
HZO-based FTJ synapse array; (b) zoomed-in schematic; (c) 
HRTEM image of the 3D TiN/FE-HZO/Pt devices; (d) 
Enlarged TEM image of the bottom cell corresponding to (c) 
(adapted from [32] with permission from Nanoscale).  
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connectivity implies that higher electrical conductivity, a 
synaptic transistor with a larger synaptic weight 
consumes more energy in performing inference 
operations at a given read voltage. From this point of 
view, the STM function acts as a filter discriminating 
less important signals - mistakenly sent signals, noises, 
less frequently incoming signals, etc. - that might be the 
sources for increasing the system power consumption by 
the synaptic components with unwantedly increased 
weights. However, STM function can be optional and 
can be prepared depending on system requirements and 
applications, and the charge-trap flash memories 
surveyed in the previous section can provide the 
plausible synaptic device solution.  

As can be inferred by Fig. 11(a), synapse is the 
connecting part between two neurons called pre- and 
post-synaptic neurons. The synapse is neither an organ 
nor an explicit structure but an aquaeous medium 
through which signals are propagating between the 
neurons. Thus, it will be closer to the reality to call it 
“connectivity” rather than a connecting part indeed. 
However, it is surely the place where two neurons meet 
each other so that the synapse can be treated as a two-
terminal device in the electronic device sense. There can 
be deficiency in numbers or imperfection in functionality 

in realizing all the functions of a biological synapse by a 
device with only two terminals, and thus, assistant 
terminals can be added as confirmed by the charge-trap 
memory devices in the previous section. At the same 
time, a substantially large portion of researches on 
neuromorphic devices have been dedicated to the two-
terminal synaptic devices owing to the great structural 
resemblance and simplicity in process integration. 
Resistive-switching random-access memory (RRAM), 
phase-change memory (PCM), ferroelectric tunnel 
junction (FTJ), and magnetic tunnel junction (MTJ) have 
been considered to be the candidates for the two-terminal 
synaptic devices. Fig. 13(a) and (b) through Fig. 15(a) 
and (b) demonstrate the synaptic devices and their arrays 
based on PCM, FTJ, and MTJ in the recent literature [31-
33].  

RRAM has relatively wider variety in the base 
material compared with PCM, FTJ, and MTJ which 
usually necessitate highly delicate control over the 
atomic compositions. Also, RRAM has a wide span of 
materials compatible with Si processing, which can be a 
merit in the massive production point of view, including 
IGZO, HfO2, TiOx, ZTO, Ta2O5, SiNx, and GeOx can be 
accommodated in the contemporary Si fabrication 
facilities [34-42]. The resistive-switching synaptic device 
can be further optimized with regard to device structure 
for low-power operation. A novel structure of wedge can 
be adopted for low-voltage learning operations helped by 
an effective field concentration as shown in Fig. 16 [43]. 
The most important feature of the hardware 
neuromorphic system becomes apparent when the vector 

Fig. 15. Schematic of MTJ-heavy metal (HM) binary synapse:
(a) Cross-sectional view; (b) A significance driven LT-ST 
stochastic synapse comprising two MTJ-HM devices [33].  

 

Fig. 16. (a) Construction of Si wedge. SEM image of the Si 
wedges for bottom electrode formation after the optimized wet 
etch process with 25% TMAH solution at room temperature;
(b) TEM images of the cross-senctional view of Si wedge. The 
heavily p-type-doped top of the Si wedge acts as the bottom 
electrode of a single synaptic device cell and a bitline in the 
array The width of the wedge top is 30 nm (adapted from [43] 
with permission from Japanese Journal of Applied Physics).  
 

Fig. 17. Measurement for input voltage vector-conductivity 
matrix multiplication function of the resistive-switching 
synaptic device cross-point array: (a) Input voltage: (V1, V2) = 
(1 V, 0 V); (b) Input voltage: (V1, V2) = (0 V, 1 V); (c) Input 
voltage: (V1, V2) = (1 V, 1 V); (d) Output current for input in 
(a); (e) Output current for input in (b); (f) Output current for 
input in (c) (adapted from [43] with permission from Japanese
Journal of Applied Physics).  
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matrix multiplication (VMM) operation is clearly shown, 
which should be the absolute index for the accelerated 
MAC operations in the ultra-light and fast hardware-
driven AI. Fig. 17 demonstrates the experimental results 
on VMM operation in the fabricated nanowedge SiNx 
resistive-switching synaptic device array [43].  

Table 1 shows the comparison among the reported 
synaptic devices introduced in Chap. II and III with 
respect to the representative characteristics, in the order 
or their appearance. The weight volatility, weight 
modulation mechanism, and type are identified on the 
first three rows, which could have been understood by 
Fig. 1. The cell areas reported in the references are listed 
on the fourth row. While some of the reported synaptic 
devices were fabricated and their cell areas were also 
explicitly clarified in the references, some of them were 
designed by device simulation and the cell areas were 
estimated by a set of critical dimensions given in the 
references. Processing maturity means the possibility that 
the invented synaptic devices can be accommodated by 
the current fabrication technology for commercial chip 
production. 2T DRAM, SFST, and QW CTS are fully 
compatible with the Si processing. Although ferroelectric 
and magnetic switching materials have been actively 
brought into the Si processing fabrication, there is still 
room for expanding the variety of materials. The 
resistive-switching materials also have a wide span of 
candidates and recent materials such as SiO2 and Si3N4 
ensure the Si processing compatibility. Based on the 
processing maturity, cell scalability has been further 

predicted, beyond the reported values, in which vertical 
CTS, PCM, and RRAM are highly scalable. All the 
reported synaptic devices are capable of multilevel 
operations, and in particular, it has been demonstrated 
that a peculiarly designed DRAM can be operated with 
multiple weights (20 weights in the report). The highest 
switching speeds are found in DRAM and MTJ synaptic 
devices and the lowest inference energies are realized by 
the charge-trap synaptic devices.  

The hardware-oriented neuromorphic system is under 
active researches and developments for the highly mobile 
and energy-efficient AI. However, the essense comes 
from the mathematical backgrounds built up by the 
biological analogy. MAC operation is one of the 
examples. In other words, there might be still room that 
can be filled by the software that complementarily work 
with the developed hardware neuromorphic system. A 
recent study shows that a successful encounter between 
the fabricated hardware neural network and software 
approach can increase the intelligent performances of the 
system. The philosophy that agent and environment 
interact with each other through action and reward (Fig. 
18(a)) substantially reduced the minimum number of car 
moves that let a targeted car out of the parking lot in a 
shorter time (Fig. 18(b)) [44]. By the reinforcement 
learning in which a reward is given, the overall learning 
process can be shortened and it can be more effectively 
mimicking the way of learning in the biological system. 
The hardware-oriented AI would be more dependent on 
memory technologies which conduct the numerous 

Table 1. Comparison among the reported synaptic devices 

 2T DRAM [17] SFST [24] QW CTS (vertical) 
[28] PCM [31] HZO FTJ [32] MTJ-HM [33] Nanowedge 

RRAM [43] 
Volatility Volatile Nonvolatile Nonvolatile Nonvolatile Nonvolatile Nonvolatile Nonvolatile 

Mechanism Charge store Charge trap Charge trap Phase change Ferroelectric Magnetic Resistive-
switching 

Type Charge storage type Resistance change type 

Reported area 250 nm 
× 250 nm 

100 nm 
× 100 nm 

100 nm 
× 30 nm 90-nm node 2.5 μm2 π/4 × 100 × 40 

nm2 
30 nm 

× 30 nm 
Processing 
maturity Extremely high Extremely high Extremely high Extremely high High High High 

Predicted cell 
scalability High High Extremely high Extremely high High Moderate Extremely high

Multilevel 
operation 

Possible  
(newly made in 

this work) 
Possible Possible Possible Possible Possible Possible 

Switching speed Extremely high High High High High Extremely high High 
Inference energy Low Extremely low Extremely low Extremely low Low High High 
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operations with superb energy efficiency in the compact 
hardware, being grafted with software in part for higher 
intelligence. 

IV. PROCESSING-IN-MEMORY (PIM) 

Processing-in-memory (PIM) is one of the traditional 
technologies that have been developed in the very-large-
scale integration (VLSI) area. The first idea came up 
with a terminology of logic-in-memory that features the 
SRAM working between the central processing unit 
(CPU) and slow high-density magnetic memory domain, 
dating back to 1970 [45]. PIM has been explictly 
appearing since 1990’s and the majority of PIM 
technology is devoted by SRAM [46]. There have been 
similar nomenclatures that can be understood in the same 
meaning of PIM as shown in Fig. 19: logic-in-memory 
(LIM), near-memory processing (NMP), in-memory 
processing (IMP), memory-centric processing, etc. In 
short, although PIM technologies have been developed 
for more than half a century in the computer architecture 
and VLSI fields, most of the dedication has been made in 
reducing the physical distance between CPU and 
memory domain by either shortening the interconnection 

or introducing a new architecture topology among 
functional blocks. In other words, all the above 
technologies are realized near the memory. So, it cannot 
be denied that PIM has been a rather metaphorical 
terminology if seen from the device point of view. 
Coming back to the original motivation, PIM aims to get 
rid of the memory bottleneck or memory “wall” in the 
serially processing conventional computers schematically 
shown in Fig. 20. This should be true since the perceived 
speed on the end user’s side is defined by the speed of 
communication between the processing unit and memory 
domain rather than the speed of processing itself. 
Thinking about the device scaling limit due to quantum 
mechanical carrier behaviors and line-and-space pitch 
limit capped by parasitic resistance and capacitances, 
further breakthrough needs to be sought with more 
specifically designed semiconductor memory devices for 
making up the PIM cells. 

The understanding of difference between PIM and 
neuromorphic system can be helpful. Fig. 21 shows the 
technological map of computer architectures. Computer 
architectures can be categorized into Von Neumann 
architecture and non-Von Neumann architecture although 
the latter is not prevalent yet. PIM has been indicating 
NMP so far, indeed. Recently, a part of functions of the 
processing unit are allocated into individual DRAM 
chips, which realizes “in-memory-array” processing [47, 

(a) 
 

(b) 

Fig. 18. Learning results: (a) Process of reinforcement learning. 
Agent and environment interact with each other through action 
and reward; (b) Number of moves required to get the red car 
out of the area during the reinforcement learning process 
(adapted from [44] with permission from IEEE Transactions on 
Electron Devices).  
 

Fig. 19. Different but same names for processing-in-memory. 
 

Fig. 20. Memory bottleneck in the serial-processing computers.
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48]. This is surely a new PIM technology advanced from 
NMP. However, the Von Neumann architecture is 
maintained in the in-memory-array processing. Whether 
the computer walks out of the Von Neumann architecture 
is not decidingly important if the motivation of PIM is 
reminded. PIM can embrace both Von Neumann and 
non-Von Neumann architectures only if the contributions 
are made in the direction of getting rid of memory wall. 
The literal PIM can be realized by cell-level-memory-
and-processing technology, and here, the conventional 
architecture shall be broken. Neuromorphic computing 
does not completely belong to PIM but its majority is 
found as a subset of PIM. The reason that neuromorphic 
system is a subset to PIM from the task capability point 
of view is more succinctly glanced by the application 
landscape in Fig. 22. The applications can be grouped 
into three main categories based on the overall degree of 
required computational precision. A qualitative measure 
of the computational complexity and data accesses 
involved in the different applications is also shown [49]. 
Although neuromorhpic is mainly focused in the 
accerlerated MAC operations, optionally with mult-level-
operational memory devices, PIM is capable of carrying 
out both arithmetic operations including MAC and 
Boolean logic operations. PIM has not existed for AI 
although the ingredients can make the substantial 
contributions. Rather, PIM is more general and universal 
technology in which neuromorphic can be realized as a 
form of PIM. Thus, indicating neuromophic system or 
MAC accelerator as PIM can be misleading since they 
take only a part in PIM. Neuromphic chip cannot replace 
the conventional CPU completely but PIM aims to be the 
new CPU technology itself. In this regard, PIM might 

have a new differentiating name of memory processing 
unit (MemPU). The final destination of logic is the 
memory cell itself, and at this stage, the literal PIM is 
realized. Breaking the Von Neumann architecture is not 
the goal but it can be broken at some moment while 
taking the forward steps to the literal PIM. It needs to be 
reminded that the PIM is not related with AI nor non-
Von Neumann computer architecture. Not all the 
technologies on memory devices and integrated circuits 
are aiming neuromorphic system but it can be admitted 
that all of them are pursuing PIM for lifting up the 
memory wall.   

V. MEMORY DEVICES FOR PIM CELLS 

SRAM and DRAM, volatile memories, showed the 
possibilities of implementing the cell-level memory and 
processing previously sketched in Fig. 21. Fig. 23 shows 
the in-memory computing schemes based on 8-T and 8+-
T SRAM cells in which Boolean operations of NAND, 
NOR, and XOR along with implication (IMP) and 2-bit 
read operation are realized. It is reported that 8+-T 
SRAM cell in the differential mode achieves a latency of 
1 ns and an average energy/bit of 29.67 fJ [50]. SRAM 
can tackle into PIM technology in advance due to its high 
operation speed but lacks of area efficiency. One of the 
early ideas on PIM based on volatile memory is found in 
the realization of in-DRAM AND and OR operations 
[51], which evolves into an accelerator-in-memory for 
bulk bitwise operations (Ambit) soon [52]. In Fig. 23, if 
A, B, and C represent the logical values of the three cells, 
then the final state of the bitline is AB + BC + CA (the 
bitwise majority function). Since the activation is a row-
level operation in DRAM, the triple-row activation 
(TRA) operates on an entire row of DRAM cells and 
multi-kilobyte-wide bitwise AND/OR of two rows is 
conducted [52]. Although the principles of individual 
memory devices are neither changed nor newly found, 
the full functionality for PIM can be expected when 
plural memory and logic devices are combined. As a 
result, PIM cell might be a more realistic terminology in 
many cases than PIM device. It would be more beneficial 
if the PIM technology is realized with a high capacity 
memory in the sense that the overall perceived speed of a 
system is determined by the speed of memory domain, as 
briefly forementioned, and the memory with the highest 

Fig. 21. Technological map of computer architectures. 
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density decides the eventual system speed. Thus, 
although the state-of-the-art PIM chip is based on 
DRAM at this moment [47, 48], nonvolatile memories 
would provide the driving force toward advanced PIM 
technologies just as in case of neuromorphic system. In 
the research level, Boolean operations are being obtained 
in the nonvolatile memories. Fig. 24 shows the XOR 
logic operation in the three-dimensional NAND flash 
memory array [53]. The PIM cell is implemented by a 
single device and the operation is conducted by the 
combinations of bitline and wordline voltages. PIM cell 
composed of two transistors and one RRAM (2T-1R) 
was reported [54]. Simultaneous operations of 2T-1R 
realizes the simultaneous logic-in-memory (SLIM) 
depending on the input voltages on the logic transistor 
gates and resistance state of the RRAM device. Fig. 25 
demonstrates that NOR operation can be performed by 
the PIM cell as one of the feasible Boolean  operations. 
It has been also reported that phase-change, ferroelectric, 
and magnetic memories can be employed in constructing 
a PIM cell that performs various set of Boolean 
operations [55-57]. 

Fig. 26 depicts bar diagrams to make a good 
distinction between NMP and the cell-level (literal) PIM. 
The first bar at the top shows the total sequences taken 

 

Fig. 22. Application landscape for in-memory computing (adapted from [49] with permission from Nature Nanotechnology). 
 

 

Fig. 23. A summary of in-memory computing schemes 
proposed by 8-T and 8+-T SRAM cells (adapted from [50] with 
permission from IEEE Transactions on Circuits and Systems I: 
Regular Papers).  

 

Fig. 24. Triple-row activation for in-DRAM logic operation 
(adapted from [52] with permission from IEEE). 
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when CPU and memory domain communicate and the 
total lenth implies the time required for a unit 
processing/memory operation between them. Advanced 
computer architecture aims to reduce the length of the 
bar: faster logic transistor for faster CPU, interconnection 
with smaller RC delay, memory devices with faster 
read/write speeds, and effective data processing methods 
need to be collectively developed. These advancements 
result in the shorter bar at the center. The past PIM 
technology has dedicated to reduce the time and energy 
loss in the interconnection by shortening the physical 
distance between CPU and memory, which can be the 
major feature of NMP. Advanced Von Neumann 
architecture can be developed by minimization of the 
individual time segments. In-memory-array processing 
can be still categorized into here. On the other hand, the 
cell-level PIM can lift off the interconnects by 
specifically designed PIM cells as shown by the bar at 
the bottom in Fig. 26, admitting that the time save in the 
logic/memory devices is getting more and more 

irreducible due to the physical and process limits. In this 
phase, Von Neumann architecture can be destructed. 

VI. CONCLUSION 

In this review, identities of volatile and nonvolatile 
memories have been contemplated in the view of 
neuromorphic and PIM technologies. Although 
neuromorphic system and PIM are not the same, they are 
not mutually exclusive at all since both of them can be 
implemented by memory devices. Although PIM is not 
targeting the AI but more widely applicable processors, 
both neuromorphic system and PIM resemble the human 
brain in which the various operations are occuring at the 
very place where the memory components are. Memory 
devices is taking the steering position for advanced 
computers and it should be the high time to make the 
series contributions toward the future processor, MemPU.  
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Fig. 26. Four possible input operand combinations: (a) a = b = ‘0’;
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SLIM bitcell with device initial state: ‘11’ (e-h) and ‘01’ (i-l) [54].
 

Fig. 25. Logic operations for XOR with three steps (adapted 
from [53] with permission from IEEE Electron Device Letters). 
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