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Abstract—To process data operations more efficiently 
in deep neural networks (DNNs), studies on spiking 
neural networks (SNNs) have been conducted. In the 
reported literature, CMOS neuron circuits that mimic 
the biological behavior of an integrate-and-fire 
function of neurons have been mainly studied. 
Because conventional neuronal circuits need to be 
improved in terms of area and energy consumption, 
neuron devices with memory functions such as 
resistive random access memory (RRAM), phase-
change random access memory (PCRAM), magnetic 
random access memory (MRAM), floating body FETs, 
and ferroelectric FETs have been emerged to replace 
a membrane capacitor and trigger device in the 
conventional neuron circuits. In this review article, 
neuron devices that can increase the integration 
density of conventional neuronal circuits and reduce 
power consumption are reviewed. These devices are 
expected to play an important role in future 
neuromorphic systems.    
 
Index Terms—Neuron device, spiking neural network, 
neuron circuit, neuromorphic systems    

I. INTRODUCTION 

Deep neural network (DNN) algorithms, which are 
regarded as an artificial intelligence (AI) technology, 

have become a core technology in various areas such as 
autonomous vehicles, image processing, and speech 
recognition [1-5]. Moreover, the technology has 
improved human convenience in many applications, 
leading to the start of new and innovative industries and 
research based on the DNNs. This great success of DNNs 
has been achieved with the explosive growth of ‘big 
data’ and the development of a processor that can quickly 
process the big data [6]. In particular, a graphics 
processing unit (GPU) that consists of highly parallel 
processing cores can accelerate the DNN operations, 
such as vector-by-matrix multiplications (VMMs) and 
multiply-accumulate (MAC) operations. Thus, GPUs 
allow the training process of DNNs to be performed with 
a large amount of training data and advanced training 
techniques that require a high computational cost, which 
significantly improves the performance of DNNs.  

Despite the great success of the DNNs, the high-
performance DNNs still require a large number of 
parameters to be trained. For example, K. He et al. 
reported Resnet-1001 consisting of more than 1000 
layers [7], and J. Lee et al. reported BERT network with 
more than 110M parameters to be trained [8]. In the 
conventional von Neumann computing architectures such 
as GPUs and central processing units (CPUs), the 
memory and the processor are physically separated from 
each other, and the communication between them is 
performed in serial. Thus, the architectures have been 
suffered from the increasing power consumption and 
system latency when a large amount of data is 
communicated between the separated memories and 
processors [9-12]. This ‘memory wall’ problem becomes 
more serious as the size of the communicated data 
increases. In this regard, hardware-based spiking neural 
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networks (SNNs), which are inspired by biological 
nervous systems, have been actively studied to overcome 
such limitations of von Neumann computing systems 
[13-15]. The hardware-based SNNs store a large number 
of parameters into the internal memory devices that can 
also compute the given operations. The SNNs with 
memory devices can efficiently perform large-scale 
parallel operations according to Ohm's and Kirchhoff's 
laws, thus exponentially reducing power consumption 
compared to traditional computing systems. Besides, it 
has been reported that the neuronal behavior of SNNs is 
similar to the behavior of an activation function in DNNs 
[16]. In other words, the training process of SNNs can be 
done in DNNs, and then the training results (i.e. weights) 
can be transferred to the SNNs. As such, the SNNs can 
achieve near the state-of-the-art performance of DNNs 
while consuming low power.  

Hardware-based SNNs mainly consist of two 
components: a synapse and a neuron. In particular, the 
neuron plays a key role as a bio-plausible processor that 
converts synapse information into spike signals (spike 
rate or time). Thanks to the efficient converting behavior 
of neurons, the neurons can replace analog-to-digital and 
digital-to-analog converters (AD/DACs) that require a 
large area and substantial power consumption in 
conventional neural systems [17]. In this regard, many 
studies have been reported to implement artificial 
neurons using complementary metal-oxide-
semiconductor (CMOS) circuits with various 
functionalities. G. Indiveri reported a low-power 
integrate-and-fire (IF) neuron circuit with a self-
adaptation leaky integration function for a homeostasis 
function [18]. W.-M. Kang et al. also reported an IF 
neuron circuit suitable for hardware-based SNNs. Based 
on CMOS IF neuron circuit, it has been reported that the 
steep switching characteristics of electronic devices can 
further save the energy consumption in the spike 
generation [19]. Various emerging electronic devices 
have been proposed as neuron devices, for example, a 
two-terminal resistive random access memory (RRAM) 
[20], a phase-change random access memory (PCRAM) 
[21], a magnetic random access memory (MRAM) [22], 
floating-body FET [23], and a ferroelectric based FET 
[24]. Also, capacitor-less neuron device can reduce 
significantly the neuron area by replacing the membrane 
capacitor, which occupies a large footprint, as a device 

with the memory function [25]. These advantages of the 
neuron devices make hardware-based SNNs more 
efficient and promising. However, while the interest in 
high-potential neuron devices has been exploding, a 
comprehensive study on the comparison between the 
neuron devices in various aspects is still insufficient.  

In this work, recent trends of neuron devices to 
implement the efficient hardware-based SNNs are 
reviewed. Firstly, conventional CMOS neuron circuits 
that mimic the biological neuron’s behavior are reviewed. 
Various types of emerging electronic devices that can 
replace the devices in the neuron circuits are introduced 
to further improve the neuron circuits. We also discuss 
the advanced neuron circuits that consist of the emerging 
neuron devices and CMOS circuits.  

II. CMOS NEURON CIRCUITS 

1. CMOS Neuron Circuits   
 
Basic operations of neurons in hardware-based SNNs 

 

Fig. 1. Axon-hillock circuit (a) Schematic diagram, (b) 
membrane potential and output voltage over time. Reproduced 
from [26]. CC BY 4.0. 
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are as follows. When the spike signals are applied to the 
synapses, the currents flow through the synapses and are 
summed up along the post-synaptic neurons. The neuron 
integrates the synaptic currents into its membrane 
capacitor (an integration part), and generates an output 
spike when the membrane potential by the accumulated 
currents exceeds the threshold voltage of the neurons (a 
spike generation part). The generated spike resets the 
membrane potential to the resting potential (reset part). 
One of the basic CMOS neuron circuits is Axon-Hillock 
neuron circuit, as shown in Fig. 1 [26]. The Axon-
Hillock neuron circuit has two capacitors: membrane 
capacitor (Cmem) for integration part and feedback 
capacitor (Cfb). Also, the circuit has one amplifier (Amp) 
for the spike generation part, and one reset MOSFET 
(Mreset) for the reset part. The amplifier is typically 
implemented with two inverters; the circuit consists of 
two capacitors and 5 MOSFETs. Iexc and Iinh represent the 
excitatory and inhibitory currents, respectively. As the 
currents are integrated into the membrane capacitor, the 
membrane potential (Vmem) changes. When the Vmem 
reaches the threshold voltage (Vth) of the amplifier, the 
Vout switches from 0 V to Vdd. Then the Vmem is increased 
by the Cfb. Also, the increased Vout turns on the reset 
MOSFET, and the reset current reduces the membrane 
potential to the resting potential.    

Based on the Axon-Hillock neuron circuit, integrate-
and-fire (IF) neuron circuits were proposed [18, 19, 27], 
which show better switching ability for the spike 
generation. Fig. 2(a) shows a conventional IF neuron 
circuit with a comparator for the spike generation part 
and feedback MOSFET (Mfb) [27]. The comparator can 
be a differential amplifier or 2 inverters connected in 
series. When the membrane potential modulated by the 
Iexc and Iinh is over the Vth in the comparator, the output 
voltage of the comparator swings up and the output 
signal of Inv1 swings down. Note that the output voltage 
of Inv1 turns on the Mfb, and the current of Mfb charges 
the membrane capacitor. The increased membrane 
potential by the current of Mfb increases the output 
voltage of the comparator. Fig. 2(b) shows another 
CMOS IF neuron circuit [19]. This circuit does not use 
the feedback MOSFET that is directly connected to the 
membrane capacitor, whereas the positive feedback also 
operates in the circuit. When the membrane potential 
exceeds the Vth, the trigger device (M1) is turned on. 

Then, the voltage at node 1 decreases, and the output of 
Inv1 increases. The output of Inv1 turns off M4 and turns 
on M2. The voltage at node 1 decreases again, further 
increasing the output of Inv1. This positive feedback 
operation can boost the switching speed when a spike is 
generated. In addition, the pull-down output of Inv2 turns 
on M3 and turns off M5 after the discharging delay by 
the capacitor connected to the gate of M3. This delay 
determines the spike width at the output of the IF neuron 
circuit. Also, the membrane potential is decreased to the 
resting potential by Mreset.  

Leaky integrate-and-fire (LIF) neuron circuits 
mimicking the ion diffusion through the membrane were 
proposed [28]. In the LIF neuron circuits, the membrane 
potential exponentially decays when the synaptic 
currents do not flow into the membrane capacitor, which 

 

 

Fig. 2. Integrate-and-fire (IF) neuron circuits proposed in (a) 
[27], (b) [19].    

 



118 DONGSEOK KWON et al : REVIEW OF ANALOG NEURON DEVICES FOR HARDWARE-BASED SPIKING NEURAL NETWORKS 

 

means ‘leaky’. This behavior can be easily implemented 
with a resistor (leaky resistor, RL) connected between the 
membrane capacitor in the IF neuron circuits and the 
ground. The resistor constantly discharges the membrane 
capacitor, decreasing the membrane potential over time. 
If the RL is an infinite value, the LIF neuron circuits 
become IF neuron circuits with zero leakage current.  

 

2. Limitations of CMOS Neuron Circuits   
 

Although the conventional CMOS neuron circuits can 
mimic the biological behavior of neurons successfully, 
the neuron circuits are still facing some limitations in 
large-scale hardware-based SNNs: energy consumption 
to generate a spike and a large-area membrane capacitor. 
Since the positive feedback can boost the switching 
speed of the spike generation part when the membrane 
potential exceeds Vth, IF neuron circuits can save energy 
consumption. However, when the membrane potential 
increases to near Vth of neurons (not exceeds), the static 
current of MOSFET also increases in the inverters, 
leading to large energy consumption in the spike 
generation. If the membrane potential near Vth maintains 
for a long time, the energy consumption of the neuron 
becomes more significant. Fig. 3(a) shows a reported 
neuron circuit using a MOSFET as a trigger device [29]. 
Here, when the membrane potential reaches the threshold 
voltage of the trigger MOSFET, the neuron generates a 
spike. Fig. 3(b) shows the static current of the trigger 
MOSFET in the conventional neuron circuit before the 
membrane potential reaches Vth. The neuron circuit is set 
to generate a spike when 25 input pulses are applied to 
the membrane capacitor. The time the static current 
steeply decreases is when a spike is generated in the 
neuron. As shown in Fig. 3(b), the static current of the 
trigger MOSFET exponentially increases as the 
membrane potential increases. Therefore, the high static 
current can be an important topic to implement efficient 
hardware-based SNNs.  

A large-area membrane capacitor is also an important 
issue to be discussed. Since the training capacity of 
neural networks increases as the network size increases, 
the number of neurons should also increase for high-
performance SNNs. For example, in the VGG-16 
network that has shown high performance in Imagenet 
classification, 24M neurons are required [30]. If each 

neuron in the SNNs with the VGG-16 network structure 
has a large-area membrane capacitor, the total area of the 
membrane capacitors will be a significant problem. 
Furthermore, in a cross-point synapse array, the synaptic 
devices are densely arranged with a pitch of bit lines 
(BLs) and word lines (WLs). Then, the neuron circuit 
with a large-area membrane capacitor clearly exceeds the 
pitch of WLs and BLs, causing the synapses to share the 
neuron circuits [11]. Then, the operations in SNNs with 
the shared neuron circuits should be performed 
sequentially, and the great advantage of parallelism in 
SNNs fades away.  

As an approach to overcome the limitations of CMOS 
neuron circuits, novel neuron devices have attracted 
attention. The neuron devices replace the following 
components in the neuron circuits: 1) the trigger device 
in the spike generation part (shown in Fig. 3(a)), 2) the 
membrane capacitor in the integration part, and 3) both 
the trigger device and membrane capacitor. Neuron 
devices replacing the trigger device exhibit steeper swing 
than MOSFET device, and neuron device replacing the 
membrane capacitor changes their conductance states 
with smaller area than the capacitor. The advanced 
neuron circuits with the emerging neuron devices can 

(a)

(b)

Fig. 3. (a) Conventional neuron circuit whose trigger device is 
MOSFET. When the membrane potential turns on the trigger 
device, the neuron circuit generates a spike. The reset pulse is 
generated in the self-controller, (b) The static current of the 
trigger MOSFET over time. The neuron is designed to generate 
a spike when 25 input pulses are applied. Reproduced from 
[29]. CC BY 4.0. 
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save the energy consumption to generate a spike and the 
area of membrane capacitor, compared to the CMOS 
neuron circuits. A detailed discussion of the neuron 
devices will be described in the next sections. 

III. NEURON DEVICES 

1. Resistive Random Access Memory 
 
An RRAM is a 2-terminal non-volatile memory device 

based on the resistance switching [20]. Many kinds of 
RRAMs have been reported as candidates for synaptic 
devices since they are easy to design a weight matrix 
using a cross-point RRAM array with long-term memory 
functionality. Fig. 4(a) shows the typical structure of 2-
terminal RRAM devices with a metal-insulator-metal 
(MIM) structure. The RRAM device exhibits resistance 
switching characteristics that depend on the conditions 
(amplitude and pulse rate) of the applied set voltage, as 
shown in Fig. 4(b) and (c). In this regard, as input pulses 
from the synapse arrays are applied to RRAM devices 
that mimic neurons, the devices can accumulate the input 

signals in the resistance of the devices, mimicking the 
integration part of IF neurons. Because the SET and 
RESET processes in RRAM devices operate at low 
voltages, RRAM-based neuronal devices do not require 
peripheral circuitry to generate high voltages. The 
switching mechanisms of RRAMs depend on the type of 
insulating material, typically filamentary switching. The 
SET process of RRAMs is attributed to the dielectric soft 
breakdown and creation of conductive filaments, usually 
consisting of oxygen vacancies. The RESET process is 
attributed to the rupture of the conductive filaments, 
usually caused by recombination of oxygen vacancies 
with oxygen ions migrated from the electrode/oxide 
interfacial reservoir. 

P. Stoliar et al. demonstrated that the LIF neuron 
model can be implemented by a single-component device 
based on a Mott insulator compound [31]. The lacunar 
spinel compounds AM4Q8 (A = Ga, Ge; M = V, Nb, Ta, 
Mo; Q = S, Se) containing transition-metal tetrahedral 
clusters are narrow-gap Mott insulators with Mott–
Hubbard gaps in the order of 0.1–0.3 eV. The system 
implements the LIF function similar to the biological 
neurons. It is worth noting that this novel functionality of 
the Mott device can go beyond the LIF model since it 
readily implements a spike by delivering an outgoing 
current pulse. Besides, C. Adda et al. proposed a neuron 
device with the LIF function by using narrow gap Mott 
insulators like the canonical system (V1−xCrx)2O3 [32]. 
The mechanism of electric Mott transition is the collapse 
of the Mott insulating state when voltage pulses (40 V, 
20 μs) are applied to the Mott insulator of (V0.89C0.11)2O3. 
Filament formation as the number of pulses for the 
integration function shows leaky integration of artificial 
neurons with various pulse intervals. J. Lin et al. 
proposed capacitor-less RRAM-based stochastic neuron 
[33, 34]. The filament length in RRAM-based neurons 
can be represented as the membrane potential in the 
conventional CMOS neuron circuit. Applying a pulse 
(1.2 V, 10 μs) to the RRAM can mimic the integration 
function by accumulating a charge in the membrane 
capacitor of a conventional neuron. By changing the 
resistance of RRAM, the fire function of neurons is 
implemented in the RRAM-based neurons. The reported 
energy consumption of RRAM in read operations is 2.14 
pJ/spike at a pulse width of 50 ns. M.-W. Kwon et al. 
proposed Ag/Si3N4/TiN (MIM)-based RRAM to replace 

(a) (b)

(c)

Fig. 4. (a) Schematic of RRAM used as the neuron device, (b) 
turn-on time of RRAM as a parameter of set voltage amplitude,
(c) Spike rate of RRAM as the number of set pulses. © 2018 
IEEE. Reprinted, with permission, from [37].  
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the membrane capacitor in the neuron circuit using SET 
process of RRAM [35]. If the input pulse (2 V, 20 μs) is 
biased continuously, the metal ions reach the bottom 
electrode (BE) and form a conducting metal bridge 
between the top electrode (TE) and BE. Then, the RRAM 
switches into LRS, and the current is increased abruptly 
from 10 μA (threshold current) to 6 mA. By applying the 
negative bias to the TE, the conducting filaments are 
ruptured. Thus, the conductivity is decreased gradually 
and resets the RRAM-based neuron. The Pr0.7Ca0.3MnO3 
(PCMO) based RRAM has been researched for the 
synaptic devices due to its scalability with good 
endurance and retention [36]. S. Lashkare et al. proposed 
emerging bipolar PCMO based RRAM as the neuron 
device with analog conductance change [37]. The 
resistive switching mechanism in the PCMO is the 
transport of oxygen ions to the reactive electrode. The 
oxygen ions in the PCMO with positive voltage drift 
towards the electrode. By applying a negative voltage 
(SET pulse: -2.5 V, 1 μs) to RRAM, oxygen ions drift 
from the reactive electrode and fill the vacancies. When 
the current at a read bias of PCMO-based neuron device 
is over 50 μA (threshold current), the output spike is 
generated, which can mimic the IF neurons. In this 
regard, RRAM is an attractive device for mimicking 
biological neurons in terms of 2-terminal structure, low 
power, CMOS compatibility, and high-density scalability. 
However, additional circuits such as comparators or 
differential amplifiers are still required to compare the 
resistance of RRAM for the spike generation.   

 

2. Phase Change Memory 
 
PCMs have been widely researched as synaptic 

devices due to their good memory characteristics such as 
retention (~10 years), endurance (>108), and fast set 
speed [21]. Conventional PCMs consist of a top electrode, 
phase change material, heater, and bottom electrode. The 
resistance of PCM is determined by the phase change 
states of an inter-layer (phase change material) in PCM. 
A Ge2Sb2Te5 (GST) has been widely used as the phase 
change material. The amorphous and crystalline phases 
of the GST have high resistance state (HRS) and low 
resistance state (LRS), respectively. To create an 
amorphous region within the crystalline material, a 
voltage pulse of sufficiently high amplitude is applied to 

PCM. Then, the current flows between the phase change 
material and heater, inducing the Joule heating. A 
substantial portion of the crystalline phase in PCM is 
melted like mushroom boundary by the Joule heating 
power. In PCM, the process of changing the phase 
change material from amorphous to crystalline phase is 
called SET. Likewise, the process of changing the phase 
change material into an amorphous phase is called 
RESET. Using the process of melting the substantial 
portion of the crystalline phase in PCM, C. D. Wright et 
al. and T. Tuma et al. proposed PCM-based neuron 
devices [38, 39]. The SET process that applies 
crystallizing pulses (2 V, 20 ns) to PCM is represented 
with accumulating charges in the membrane capacitor for 
the integration function. After the SET process, changing 
LRS in PCM is represented to the fire function of 
neurons (threshold current: 2 μA). Fig. 5 shows a 

(a)

(b)

Fig. 5. (a) Phase-change device conductance as a parameter of 
the number of crystallizing pulses for the pulse sequence, (b) 
Spike rate of the PCM as a parameter of amplitude of the input 
pulses. © 2016 Nature Publishing Group. Reprinted, with 
permission, from [38]. 
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schematic of PCM used as the neuron device and the 
conductance of the device as a function of the number of 
crystallizing pulses. C. D. Wright et al. and T. Tuma et al. 
demonstrated that PCM can be implemented as the 
function of IF neurons by the SET process in phase 
change materials. 

Despite the great advantages of PCMs, Joule heating 
power that is required to crystallize the phase change 
material consumes substantial power per spike during the 
integration. Since PCM-based neuron devices have 
stochastic switching characteristics with the number of 
pulses, as shown in Fig. 5(b), the development of neural 
networks suitable for stochastic switching characteristics 
is necessary.   

 
3. Magnetic Random Access Memory 

 
An MRAM has been researched as one of the 

candidates in emerging synaptic devices for hardware-
based neural networks. As synaptic devices, MRAMs 
have relatively good performance in the read and write 
operations with the high speed (~ ns) and low energy 
consumption (~ pJ) [22]. Also, MRAMs show excellent 
characteristics in terms of endurance (>108). MRAMs are 
generally categorized into spin-transfer torque (STT) and 
spin-orbit torque (SOT) MRAMs, depending on the spin 
mechanism. Fig. 6(a) and (b) show new structures of 
STT- and SOT-MRAMs to mimic the IF function, 
respectively. Conventional STT-MRAMs with a 
magnetic tunnel junction (MTJ) consist of a free 
magnetic layer, a tunnel layer, and a fixed magnetic layer 
[40-45]. When the magnetization direction of the free 
magnetic layer is parallel to the fixed magnetic layer, a 
resistance state of the STT-MRAM is low. On the other 
hand, the resistance state of the STT-MRAM is high 
when the direction of the free magnetic layer is anti-
parallel to that of the fixed magnetic layer. Thus, the 
resistance state of STT-MRAM is determined by the 
magnetization direction of the free magnetic layer with 
respect to the fixed magnetic layer. Flowing the current 
through the MTJ can change the magnetization direction 
(spin-up or spin down) of the free magnetic layer due to 
the STT effect. The SOT-MRAM consists of a 
ferromagnetic layer and a heavy metal layer [46, 47]. In 
the SOT-MRAM, the current flowing through the heavy 
metal causes SOT operation, changing the magnetization 

direction (spin up and spin down) of the magnetic layer. 
A resistance state of the SOT-MRAM is determined by 
moving a domain wall that is a boundary between spin-
up and spin-down in the magnetic layer. In addition, 
when the same current flows to change the magnetization 
direction, the magnetization of the SOT mechanism is 
larger than that of the STT mechanism [47]. Therefore, 
the SOT-MRAM has a lower power consumption during 
the write operation than the STT-MRAM. However, the 
SOT-MRAM has three or four terminals to allow current 
to flow through the heavy metal to change the resistance 
state. Conventional STT-MRAMs show the binary 
memory function by changing the magnetic direction in 
the free magnetic layer. To mimic the integration 

(a)

(b)

Fig. 6. (a) Structure of STT-MRAM and the resistance change 
of STT-MRAM with number of pulses. Reproduced from [43]. 
CC BY 4.0, (b) Characteristics of the SOT-MRAM with 
displacement of the domain wall. © 2019 WILEY-VCH. 
Reprinted, with permission, from [46].   
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function of neurons, D. Fan et al. proposed an STT 
neuron device with 4-terminals based on domain wall 
motion (DWM) magnetic strip [40]. By applying current 
pulses (~1 ns) in the lateral direction to the 4-terminal 
STT neuron device, the DWM of the STT neuron device 
moves in the lateral direction. When the conductance of 
the STT neuron device with the DWM is over the 
threshold current (~200 μA) of the reference MTJ, the 
output signal is generated, and reset current is applied to 
the STT neuron device in a lateral direction to initialize 
displacement of the domain wall. To implement the 
multi-level resistance in the STT-MRAM with binary 
memory for synaptic and neuron devices, D. Zhang et al. 
proposed multiple vertically stacked MTJs [41]. The 
MTJ consists of the CoFeB/MgO/CoFeB thin films and 
shows stable multiple resistance states by interfacial and 
materials engineering of its components. By changing the 
resistance of multiple MTJ stacks, the integrate-and-fire 
function of neurons is represented. K. Kondo et al. and D. 
W. Kim et al. proposed a 2-terminal perpendicular STT 
based neuron device, which consists of the bottom 
electrode/seed layer/synthetic anti-ferromagnetic layer 
(SyAF)/ ferromagnetic free layer/MgO tunneling 
layer/ferromagnetic pinned layer/top electrode [42, 43]. 
The proposed p-STT neuron devices have double free 
magnetic layers to implement the integration function of 
the membrane capacitor. When the voltage pulses 
(~1.2 V, 250 μs) are applied to the p-STT neuron device, 
the spin-direction of electrons in the first-free layer near 
the MgO tunneling barrier tends to change from 
downward to upward due to the STT mechanism. When 
the voltage pulses (synaptic spikes) are continuously 
applied to the p-STT neuron device after changing the 
spin-direction of all electrons in the first-free layer 
completely, the spin-direction of all electrons in the 
second-free layer is changed from the parallel (10 kΩ) to 
the anti-parallel state (~23 kΩ) by the ferro coupling and 
STT mechanism. As a result, the resistance of p-STT 
neuron device rapidly increases. In the p-STT neuron 
device, the integrate-and-fire function of neurons was 
implemented by gradually changing the magnetic 
direction of the first free magnetic layer. M.-H. Wu et al. 
and F.-X. Liang et al. proposed a p-STT with dual-
MgO/CoFeB interfaces and a Co/Pt multilayer SyAF-
based pinned layer [44, 45]. The proposed STT neuron 
device exploits a back-hopping (BH) oscillation 

mechanism in the MTJ, implements integration, voltage 
spike generation, and reset operation in a single device. 
To generate output spikes, synaptic current and extra bias 
current (0.8 mA) are needed. A. Kurenkov et al. 
proposed antiferromagnet/ferromagnet hetero-structure 
using the SOT mechanism for the neuron device [46]. 
The SOT neuron device with 4-terminals consists of a 
stack of Ta/Pt/Pt38Mn62/Pt/(Co/Ni)2 /Co/MgO/Ru into 
100 nm devices with binary switching. By applying 
voltage pulses (~1 V, 100 ns) through the heavy metal, 
the domain wall moves in the lateral direction due to the 
SOT mechanism. The integrate-and-fire function of 
neurons is implemented by changing the resistance of the 
SOT neuron device with the DWM. Although the SOT-
based neuron device has low energy consumption to 
rotate spin-up and spin-down, development for high 
density is needed because of the 4-terminal structure of 
the heavy metal and the area to move the domain wall for 
the integration function. 

 
4. Floating-body FET 

 
Based on the mature Si technology that has been 

widely studied in several decades, various FET-type 
neuron devices were proposed [17, 23, 25, 47-49]. 
Thanks to their high compatibility with CMOS process 
technology, the studies on the FET-type neuron devices 
have been extended to the advanced neuron circuits that 
can overcome the limitations of conventional CMOS 
neuron circuits. One of the popular FET-type neuron 
devices is a positive feedback FET device. Fig. 7(a) 
shows a typical structure of a positive feedback FET 
device with a pnpn-doped floating body and two gates 
[23]. The detailed operation of the device is as follows. 
When the positive bias is applied to gate 1 and drain, the 
electrons are injected from the n+ source into the n- doped 
floating body. The electrons are accumulated in the 
floating body and lower the barrier height for the holes. 
Then, the holes are also injected from the p+ drain into 
the p- doped floating body, lowering the barrier height 
for the electrons. Thus, the electrons are more easily 
injected into the n- body, lowering the barrier height for 
the holes again. This positive feedback operation flattens 
the energy band, which leads to the diode current flowing 
through the device. Fig. 7(b) shows the energy band of 
the device depending on the off-state and on-state. At the 
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on-state, the energy band of the device is flat. Fig. 7(c) 
and (d) show the drain current versus Vgate1 depending on 
the Vdrain and Vgate2, respectively. Since the drain voltage 
determines the diode current when the positive feedback 

FET device is the on-state, the drain current 
exponentially increases as the drain voltage increases. In 
addition, since the depth of the potential well in the n- 
doped floating-body increases with increased Vgate2, the 
turn-on voltage of Vgate1 increases as Vgate2 increases. 
Note that the most important characteristic of the positive 
feedback FET device is subthreshold swing (SS). Due to 
the positive feedback operation, the device shows super-
steep switching characteristics when the Vgate1 is the turn-
on voltage of the device. The reported SS is less than 2.3 
mV/dec, which is much lower than the SS of MOSFETs. 
This strong advantage makes the positive feedback FET 
device replace the trigger MOSFET in the CMOS neuron 
circuits, reducing the energy consumption in the spike 
generation operation. 

Additionally, based on the positive feedback FET 
device, a novel concept of the neuron device that can 
replace a membrane capacitor was proposed [25]. The 
floating body in the device acts as a capacitor that 
accumulates the injected electrons, which can be used for 
the membrane capacitor. As a result, the neuron device 
can replace not only the trigger MOSFET with the super-
steep switching characteristics but also the membrane 
capacitor that significantly occupies a large area. Fig. 

(a)

(b)

(c)

(d)

Fig. 7. (a) Schematic of the positive feedback FET, (b) Energy 
band of the positive feedback FET depending on the on-state 
and off-state. Drain current versus gate 1 voltage as a parameter 
of (c) drain voltage, (d) gate 2 voltage. © 2018 AIP Publishing. 
Reprinted, with permission, from [23]. 

 
 

(a)

(b)

(c) (d)

Fig. 8. (a) Schematic of the positive feedback FET, (b) SEM 
image of the fabricated positive feedback FET, (c) Anode 
current versus VG1 as a parameter of VG2, (d) Drain current 
versus VG1 as a parameter of VG2. Reproduced from [25]. CC 
BY 4.0. 
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8(a) shows a schematic view of the neuron device based 
on the positive feedback FET. In this neuron device, the 
synaptic current is converted into the voltage signal, and 
the voltage signal is applied to the G1 of the positive 
feedback FET. The positive bias applied to G1 increases 
the amount of electrons in the n-doped floating body. 
When the gate bias exceeds the turn-on voltage of the 
positive feedback operation, the device steeply turns on 
(reported SS = 0.015 mV/dec). On the contrary, the 
positive bias applied to G2 decreases the amount of 
electrons in the n-doped floating body, which inhibits the 
energy band from flattening out. In this behavior of the 
positive feedback FET, the input signals (excitatory and 
inhibitory signals) are accumulated into the floating body, 
which replaces the membrane capacitor. Thus, the device 
can greatly reduce the footprint of hardware-based SNNs. 
In addition, thanks to the separated gates receiving each 
signal, the device simultaneously processes the excitatory 
and inhibitory signals. By using both excitatory and 
inhibitory signals, S. Y. Woo et al. reported a 98.58% of 
accuracy rate for MNIST classification in the SNNs. 

Another approach to using floating-body FETs as 
neuron devices is to use the single transistor latch (STL) 
phenomenon in 3-terminal floating body FETs (Fig. 9) 
[49]. In floating body FETs with negative gate bias, it is 
observed that the drain current is dramatically increased 
at a drain bias of Vlatch, as shown in Fig. 9(b). This means 
that the resistance between the drain and source also 
steeply changes at the Vlatch, and the steep switching 
behavior of the 3-terminal floating body FET can be 
utilized as neuron devices replacing the trigger MOSFET 
in the CMOS neuron circuit. Also, the body-drain 
junction capacitor in the floating body FET can be used 
to replace the membrane capacitor, which reduces the 
area of the membrane capacitor in SNNs. As a result, the 
behavior of LIF neurons was implemented with the STL 
phenomenon in the 3-terminal floating body FETs while 
saving the energy consumption to generate a spike.  

The mentioned floating body FETs have shown 
promising potential to replace the trigger MOSFET and 
membrane capacitor in CMOS neuron circuits. On the 
other hand, there are some limitations in using the FETs 
as neuron devices. Floating body FETs using positive 
feedback operations have a time delay to switch their 
states at the turn-on voltage (~100 ns, [29]). Thus, the 
time interval between the spikes in SNNs should be 

much longer than the time delay, which can increase the 
system latency of SNNs. The biggest limitation of 
floating body FETs is the variation between the devices, 
such as the turn-on voltage of positive feedback 
operations. The variation in turn-on voltage directly 
affects the Vth of the spike generation part, degrading the 
accuracy of SNNs. To solve the variation problem, a 
charge trapping layer (CTL) can be employed in the gate 
insulator stack of the FETs. Since the charge in the CTL 
modulates the electric field, the turn-on voltage of the 
devices can be adjusted to the set voltage. Besides, an 
incremental step pulse programming (ISPP) method 
more accurately adjusts the turn-on voltage of positive 
feedback FETs with the CTL. Using the tuning methods, 
the turn-on voltages of the neuron devices can be 
uniform on the chip. 

 
5. Ferroelectric FETs 

 
Recently, ferroelectric FETs (FeFETs) whose gate 

stack consists of a ferroelectric layer such as HfxZr1-xO2 

(a)

(b)

 

Fig. 9. (a) Schematic of floating body FET on an SOI wafer, (b) 
Drain current versus drain voltage as a parameter of VGS. Steep 
switching is shown by the single transistor latch (STL)
phenomenon. © 2020 IEEE. Reprinted, with permission, from 
[49]. 
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material have been actively researched for neuron 
devices [50-53]. In the ferroelectric layer, the 
polarization can be accumulated with the strength and 
applied time of the electric field according to the multi-
domain switching theory [14]. In other words, the 
ferroelectric polarization can be modulated with the 
voltage pulses (synaptic inputs) applied to the FeFET. 
Note that the accumulated ferroelectric polarization also 
affects the conductance of the FeFETs. Thus, the FeFET 
can switch when the threshold voltage of FeFETs crosses 
the read voltage caused by the voltage pulses. This 
behavior of the ferroelectric layer in FeFETs can replace 
the membrane capacitor of conventional CMOS neuron 
circuits, which can reduce the area footprint of hardware-
based SNNs. The big advantage of the FeFET neuron 
devices is that the voltage amplitude modulating the 
accumulated polarization is low compared to the voltage 
amplitude in FETs with the CTL. In the neuron device 
with the CTL [29], the input voltage pulses that modulate 
the conductance of the neuron device are over ~7 V. 
Hence, the operating voltage of the system should be 
increased, which is a burden of the system. In contrast, 
the ferroelectric polarization can be modulated with the 
~3 V of voltage pulses, reducing the operating voltage of 
the system while taking the advantages of the FeFET 
neuron devices.  

Fig. 10(a) shows the typical structure of metal-
ferroelectric-metal (MFM) capacitor with HfxZr1-xO2 
material. The 10 nm HfxZr1-xO2 is sandwiched between 
the Tungsten electrodes. Fig. 10(b) shows the 
polarization versus electric field loop with minor loops 
by multiple domains in the ferroelectric material. By 
using the characteristics of a ferroelectric layer, an 
FeFET-based LIF neuron was proposed [24]. Fig. 11(a) 
shows the schematic structure of FeFET with a leaky 
ferroelectric layer. The ferroelectric layer shows a leaky 
effect through degradation in polarization. Fig. 11(b)-(d) 
shows the drain current of FeFET versus pulse number as 
parameters of pulse amplitude, pulse width, and the time 
interval between the pulses, respectively. The 
polarization accumulation increases with the increasing 
pulse amplitude and pulse width, but decreases with the 
increasing time interval due to the leaky effect. The 
conductance of FeFET neuron devices can be modulated 
by the polarization accumulation. In this regard, the input 
signals (voltage pulses) from the synapses can be applied 

to the gate of FeFET, and the ferroelectric layer can be 
accumulated the input signals. Thus, the FeFET can be 
used for a neuron device with 1T1R structure, which is 
much smaller in area than conventional CMOS neuron 
circuits with a large-area membrane capacitor.   

Since the reported FeFET has a single gate that 
receives the input signals, the FeFET can process the 
excitatory signals only, which means that the direction in 
conductance change of FeFET is only the direction to 
generate a spike. However, the inhibitory signals are the 
essential elements for high-performance SNNs, thus the 
single-gate FeFETs as neuron devices are limited. In [53], 
J. Luo et al. also proposed a leaky-FeFET neuron that 
can process both excitatory and inhibitory signals by 
adding a transistor connected to the gate of FeFET. 
However, in this case, the excitatory and inhibitory 
signals should be processed sequentially because the 
single gate that processes the signals is used for a 
membrane capacitor. In terms of device structure or 
neuron circuit design, the FeFET should be further 
improved to process both excitatory and inhibitory 
signals simultaneously. In addition, SS of the FeFET 
devices is similar to the conventional MOSFET. Thus, 
the FeFET neuron devices are also facing the energy 
consumption in the spike generation operation.  

(a)

(b)

Fig. 10. (a) Schematic of a ferroelectric layer with a HfxZr1-xO2
material, (b) Polarization versus electric field with multi-
domain. Reproduced from [14]. CC BY 4.0. 
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The overall comparison of the reported neuron devices 
is represented in Table 1. The output voltage amplitude 
and number of transistors are also represented in Table 1.  

IV. ADVANCED NEURON CIRCUITS 

In this section, we will discuss the advanced neuron 
circuits that include an emerging neuron device replacing 
a membrane capacitor or switching MOSFET. Fig. 12 
shows an IF neuron circuit based on a p-STT MTJ 
replacing the membrane capacitor [43]. In this circuit, the 

input pulses from the synapse array are applied to the 
MTJ. Then, the resistance of MTJ is increased by the 
input pulses, meaning that the input signals are 
accumulated into the MTJ. When the resistance of the 
MTJ exceeds the reference resistance, the IF neuron 
circuit generates a spike and resets the resistance of the 
MTJ. The calculated p-STT MTJ-based IF neuron’s area 
is ~8.2 μm2, which is greatly reduced by the area of a 
CMOS neuron circuit using a membrane capacitor. Fig. 
13 shows an LIF neuron circuit with 2T1R structure 
based on an FeFET device [53]. The voltage pulses from 

(b)(a) (c) (d)

Fig. 11. (a) Schematic of the L-FeFET, (b) Current accumulation effect of the L-FeFET depending on (a) pulse voltage, (b) pulse 
width, (c) time delay between the pulses. The accumulation of L-FeFET acts as a membrane capacitor that integrates the signals of 
synapses. © 2019 IEEE. Reprinted, with permission, from [24]. 

 
Table 1. Comparison of reported neuron circuit and devices 

Type Material Mechanism Replacing 
Component 

Operation 
Voltage 

Threshold 
Current 

Output 
Voltage 

Amplitude 

Energy 
Consumption 

Number of 
Transistors in 

Neuron Circuit
CMOS Circuit 

[29] Si - - 1.5 V 30 nA 1.5 V 25 pJ/spike 5 

RRAM [37] W/PCMO/Pt Transport of 
Oxygen Ions Membrane Cap. 2.5 V > 10 μA - - - 

RRAM [54] Ag/HfO
2
/Pt Formation of 

Filaments Trigger Device < 1.0 V ~ 1 pA 0.2 V 270 fJ/spike - 

PCM [38] Ge
2
Sb

2
Te

5
 Joule Heating Membrane Cap. 2.0 V 2 μA - - > 9 

SOT-MRAM 
[46] 

Ta/Pt/Pt
38

Mn
62

/ 
Pt/Co/Ni/Co/ 

MgO/Ru 

Magnetization 
Switching Membrane Cap. > 5.0 V - - - - 

Floating-Body 
FET [23] Si Positive 

Feedback Trigger Device 1.5 V < 10 pA 1.5 V 120 fJ/spike 9 

Floating-Body 
FET [25] Si Positive 

Feedback 
Trigger Device, 
Membrane Cap. 1.0 V ~1 nA 1.0 V 0.62 pJ/spike 6 

Floating-Body 
FET [49] Si Single Transistor 

Latch 
Trigger Device, 
Membrane Cap. ~3.0 V ~1 pA ~3.0 V 45 pJ/spike - 

FeFET [24] HZO, Si Polarization 
Switching Membrane Cap. 2.2 V 5 μA > 1.5 V - 4 
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the excitatory synapses are applied to the gate of FeFET 
through the R0, the conductance of FeFET increases 
(decreasing VT of FeFET). In contrast, the voltage pulses 
from the inhibitory synapses are applied to the gate of 
nFET whose source is biased to Vinh, decreasing the 
conductance of the FeFET (increasing VT of FeFET). 
Then, the input signals from the synapses are 
accumulated into the FeFET, replacing the membrane 
capacitor. When the VT of the FeFET is lower than the 
read voltage, the high drain current flows through the 
FeFET, generating a spike signal.  

Fig. 14 shows an IF neuron circuit based on positive 
feedback FET device that shows steep switching 
characteristics [23]. In this circuit, the input signals are 

integrated into the membrane capacitor. When the Npass 
turns on, the membrane potential is applied to the INV1. 
When the membrane potential exceeds the turn-on 
voltage of the neuron device, the conductance of the 
device increases sharply, and the voltage at node 1 
decreases. The Pboost also turns on and charges the 
membrane capacitor. A spike is generated at the output 
node, and the reset nMOS turns on (Ndischarge). If the 
resistance of R1 is not infinite, this circuit becomes the 
LIF neuron circuit. Note that the energy consumption of 
the advanced neuron circuit is reduced by 94% than the 
conventional CMOS neuron circuit. Thanks to the steep 
switching characteristics of the positive feedback FET, 
the current through the inverter in the advanced neuron 
circuit is kept low when the membrane potential 
approaches close to the turn-on voltage of FET. The 
advanced neuron circuit significantly reduces the energy 
consumption of the neuron circuit. Although the large-
area membrane capacitor is used in the advanced neuron 
circuit, this low energy consumption is a clear advantage.  

The advanced neuron circuit whose neuron device 
replaces both membrane capacitor and switching device 
is shown in Fig. 15. Here, the neuron device is based on 
the positive feedback FET in [25]. The excitatory and 
inhibitory signals are applied to gate 1 and gate 2, 
respectively, modulating the amount of accumulated 
electrons in the n-body under gate 3. The turn-on voltage 
of the FET can be adjusted by the CTL under gate 3, 

Fig. 12. Advanced neuron circuit based on the MTJ. The input 
signals are accumulated as the resistance of MTJ, and the 
resistance is compared with the reference resistance. 
Reproduced from [43]. CC BY 4.0. 

 

 

Fig. 13. Advanced neuron circuit using a FeFET. The 
excitatory signals are applied through R0, and the inhibitory 
signals are applied to the gate of nFET. The entire neuron 
circuit was fabricated. © 2019 IEEE. Reprinted, with 
permission, from [53]. 

 

Fig. 14. Advanced neuron circuit using a positive feedback 
FET. The FET replaces the trigger MOSFET in the 
conventional CMOS neuron circuit to reduce the energy 
consumption for spike generation. The entire neuron circuit was 
fabricated. © 2018 AIP Publishing. Reprinted, with permission, 
from [23]. 
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allowing the turn-on voltage of the neuron devices to be 
uniform on the chip. When the excitatory signals are not 
applied to gate 1, the pMOS (M2) turns on and pulls up 
the input voltage of the inverter. When the accumulated 
electrons in the n-body are enough to trigger the positive 
feedback due to the excitatory signals, the pn diode turns 
on and the input voltage of the inverter decreases. Then, 
a spike signal is generated at the output of the inverter, 
and the spike turns on nMOS (M1). The turn-on M1 pulls 
down the input voltage of the inverter, and then the 
accumulated electrons in the n-body flow out to the 
cathode for the reset of the FET device. In this advanced 
neuron circuit, the positive feedback FET device replaces 
both membrane capacitor and switching device. The 
input signals from the synapse array (excitatory and 
inhibitory signals) are accumulated into the n-body as a 
membrane capacitor, and the FET steeply switches on 
when the positive feedback operation is triggered by the 
accumulated electrons. The reported neuron circuit only 
consumes 0.62 pJ/spike, which is reduced by ~90% 
compared to that of the conventional CMOS neuron 
circuit.   

V. CONCLUSION 

In this work, we reviewed recent trends of analog 
neuron devices for hardware-based SNNs. Firstly, 
conventional CMOS neuron circuits that mimic the 
biological behaviors of neurons were reviewed. The 
CMOS neuron circuits face limitations in that they 
consume relatively high energy consumption in the spike 
generation and the membrane capacitor that occupies a 

large area. In this regard, the emerging neuron devices 
were introduced to overcome such limitations of CMOS 
neuron circuits. We summarized the recent progress of 
RRAMs, PCMs, MRAMs, floating body FETs, and 
FeFETs as neuron devices. The reported neuron devices 
can replace the trigger device with the steep switching 
characteristics, and/or the membrane capacitor with their 
memory functionality. Finally, the advanced neuron 
circuits that include the emerging neuron devices were 
discussed.  
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