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Abstract—The design of radiofrequency energy 
harvesting (RFRH) circuit for wearable devices, 
wireless sensor networks, and IoT applications can be 
classified mainly into radio frequency to direct 
current (RF-DC) converter, a transmitter and 
receiver antenna, an impedance matching network, 
and a storage device or a load. By scavenging RF 
energy from the ambient environment, this 
developing technology allows low-power wireless 
devices to be self-sustaining and environment friendly. 
To eliminate the need for batteries, RFEH technology 
has become a dependable and promising alternative 
for extending the lifetime of power-constrained 
wireless networks. This paper mainly focused on the 
input and output power, Power conversion efficiency 
(PCE), and sensitivity. Due to the weak and limited 
signal strength of received RF power, high-efficiency 
state-of-the-art RF energy harvesters must be 
designed to provide sufficient DC supply voltage to 
wireless networks. We provide in-depth information 
on the system's parameters. Optimum efficiency and 
maximum output power are the main concerns of an 
RFEH system. Therefore, RF Energy harvesting 
system review, antenna design, impedance matching, 
and RF-DC converter are presented in this paper to 
provide a deep insight into the design of the RFEH 
system. This article may help in identifying new 
research in the field of RF Energy Harvesting.    

Index Terms—Radio frequency to direct current (RF-
DC), energy harvesting (EH), power conversion 
efficiency (PCE), wireless sensors network (WSN)    

I. INTRODUCTION 

The recent advancement in ultra-low power and 
wireless communication technologies increases the 
research interest in energy harvesting. Radiofrequency 
(RF) energy harvesting provides a progressive approach 
for the power supply to wireless sensor networks (WSN), 
the internet of things (IoT), and wearable devices [1, 2]. 
RF energy harvesting is a feasible and promising solution 
for powering these wearable electronic devices due to the 
availability of RF in an ambient environment where all 
the other energy sources may not be available or limited 
availability. RF energy harvesting reduces the time 
dependency as compared to solar, thermal, EM, and 
vibrational energy harvesting sources. Also solar and 
thermal energy harvesting process varies with weather 
conditions [3]. The only ultimate solution to provide a 
long-term power supply and replace the batteries is 
energy harvesting technology.  

Fig. 1 shows different types of energy harvesting 
present in the ambient environment such as solar energy 
[4], RF energy [5-9], thermal energy [10], 
electromagnetic (EM) energy [11], and vibrational 
energy [12]. Solar energy harvesting uses the 
photovoltaic effect to convert sunlight into electrical 
energy. Even though solar energy is the most abundant, it 
is not a promising energy source for wireless sensors that 
are normally mounted indoors and run 24 hours a day, 
seven days a week. For solar energy solar panels are used 
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to harvest energy from the environment. The power 
conversion efficiency (PCE) of a common solar cell is 
about 20% [13]. Solar cells are integrated with the RF 
antenna and serve as the antenna's ground plane. 
However, the performance is restricted to a narrow band. 
RF energy harvesting is the process of harvesting RF 
energy and then converting it into electrical energy that 
can be utilized in daily lives. Numerous research has 
been conducted in the previous years to examine the 
viability of utilizing ambient RF energy as an alternative 
source [14-19]. Wireless radio networks, cellular towers, 
and television (TV) towers radiate RF energy almost 
everywhere in the environment [20-23]. According to 
recent surveys, the density of the measured RF energy 
level reveals promising possibilities in harvesting 
ambient RF energy for low-power devices. The sensor 
nodes in wireless sensor networks are arranged on a 
broad scale for monitoring applications such as IoT, 
healthcare [24-27], smart city environment monitoring 
[28], and industrial manufacturing [29, 30]. When 

thermoelectric materials are heated, they develop an 
electric potential. Thermoelectric generators are a simple 
example of thermal energy. They can also apply in 
reverse, for producing heat by applying an electric 
potential. Human body is used as a thermal source, which 
has the power density of thermal energy is roughly 
20 mW/cm2 to 60 mW/cm2 at ambient room temperature 
[31]. Micro-strip lines [32, 33], and coplanar strip lines 
(CPS) [34] are now proposing and designing several 
types of dual/multi-band rectifiers. Vibration energy 
harvesters use the piezoelectric effect to transform 
kinetic energy (human movement or industrial vibration) 
into electrical energy [35, 36]. However, the human must 
take breaks or the machine will not be able to run 
continuously. The output power and bandwidth of 
Vibration energy harvesting devices must be enhanced in 
order to produce workable Vibration energy harvesting 
systems. The flux path should be designed to increase the 
magnetic flux over the coil to improve output.  

The RF energy harvesting approach has several 
important characteristics that set it apart from other 
sources. The major characteristics that distinguish RF 
energy harvesting from other energy sources are 
reliability and affordability. Reliability is defined as 
gathering enough energy to allow sensor nodes in any 
sensor network to operate continuously at any time and 
in any location. Also, RF energy sources including 
cellular networks, TV networks, radio networks, 
Bluetooth signals, and Wi-Fi are available both indoors 
and out, ample and continuous energy may be captured 
for RF-powered wireless sensors. Wireless sensors 
powered by non-RF energy sources are more expensive 
than those powered by RF energy. In communication 
systems such as wireless power communication (WPC)  
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Fig. 1. Different energy sources for energy harvesting system.
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Fig. 2. Wireless power transfer (WPT) architectures: (a) Near field WPT; (b) Far field WPT. 
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and simultaneous wireless information power transfer 
(SWIPT) systems, the RF energy harvesting can be 
combined with information transfer and can be used 
productively [37, 38]. Furthermore, the application of 
low-power wireless devices is on the rise. Due to these 
attributes, RF-EH has gained a lot of attention which led 
to more research being carried out in finding significant 
advancements in the technique [39, 40].  

RF signals in the frequency range of 3 kHz to 300 
GHz can be employed in the RFEH, which can be based 
on near-field or far-field energy transfer. Table 1 shows 
the comparison techniques between near-field and far-
field wireless power transfer (WPT) for power transfer. 
(a) near-field (non-radiative) technique, and (b) far-field 
(radiative) technique [41]. Fig. 2 shows the general form 
of near-field (a) and far-field (b). Near-field is further 
divided into magnetic resonance and inductive coupling 
which is used for power transfer. A good example of a 
technology that operates in both the near-field and far-
field regions is radio frequency identification (RFID). 
There are two frequency range classes in the passive 
RFID systems. One is a high-frequency RFID system and 
the other is an ultra-high frequency RFID system. A 
high-frequency RFID system frequency range is 3 MHz 
to 30 MHz and can operate from a few centimeters to a 
meter in the near-field zone, while an ultra-high 
frequency RFID system frequency range is from 300 
MHz to 1GHz and can operate across a longer range of 
up to 100 m in the far-field region [42]. In the near-field 
region, RF power transfer conversion efficiency is higher 
than in the far-field region [43]. The power density value 
is directly proportional to the distance from the source, 
therefore, the power density increases in the near-field 
and decreases in the far Even though the power density is 
significantly important, but the far field has a wide area 
to harvest energy from the environment. Moreover, 
sometimes due to the need and demand of the 

architecture the energy collecting device may need to be 
located a distance from the source. The near-field 
transfer is utilized to power household appliances, while 
far-field transfer remains a research problem, particularly 
in terms of boosting conversion efficiency. We 
concentrate on the output voltage and efficiency in the 
far-field region.  

The remaining review paper is further organized as 
follows; section II describe the review of the energy 
harvesting system, section III presents the Antenna 
design and Impedance matching network, section IV 
presents the detail of the RF-DC converter, and finally, 
section V concludes the review paper.  

II. REVIEW OF RF ENERGY HARVESTING 
SYSTEM 

The objective of RF energy harvesting is to harvest 
electromagnetic waves traveling in free space and 
convert them into functional electrical energy that can be 
used in driving electronic devices. Fig. 3 presents the 
block diagram of a far-field RF energy harvesting system 
which is composed of an RF source that transmits the RF 
power by the transmitter antenna to the ambient 
environment. This RF source may be a cellular 
transmission, TV tower, AM/FM radio transmission, Wi-
Fi, or dedicated RF power source. The dedicated RF 
signal is transmitted under the rule of the Federal 
Communication Commission (FCC). The transmission of 
signals in the FM band, TV band, and GSM band all 
require a license. These RF signals catch by a receiver 
antenna which is connected to the impedance matching 
network, an RF-DC converter circuit, and the rectified 
power is stored in the storage device. The rectifier is the 
major block of an RFEH system that converts the 
collected RF energy into a useful electrical output.  

Numerous factors affect the performance of an RF 

Table 1. Comparison techniques between Near-field and Far-field WPT 

Field Region WPT technique Propagation Efficiency Distance 

Resonant inductive coupling Non-radiative From 5.81% to 57.2% when frequency is 
16.2 kHz to 508 kHz  

From few millimeters to few 
centimeters Near-field 

Magnetic resonance coupling Non-radiative From above 90% to above 30% when 
distance if from 0.75m to 2.25m [41] 

From few centimeters to few 
meters 

Far-field RF energy transfer Radiative 
0.4%, above 18.2% and over 50% at 40 
dBm, -20 dBm and -5 dBm input power 
[42] 

Depend on distance, frequency, 
and the sensitivity (typically from 
several meters to several 
kilometers) [33] 
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energy harvester in a far-field WPT system. For example, 
path loss limits the signal strength received at the RF 
energy harvester's input, signal attenuation over distance 
from the power source is unpredictable, and there are 
hindrances between the RF energy harvester and the 
antenna orientation, power source, and the medium of 
transmission in which the RF energy harvester is used 
[44]. Free-space path loss describes the deterioration of 
signal strength. It is determined by the transmitting signal 
frequency, antenna gain, and the distance from the 
transmitter to the receiver. The transmitted and received 
power can be calculated by the Frii formula as  
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where the transmitted and received power to the antenna 
is PT and PR respectively. Similarly, the transmitting 
antenna gain is GT, and receiving antenna gain is GR. the 
wavelength of the transmitting signal is determined by 
λ , while the distance between the transmitting and 
receiving antenna is denoted by R. By using the above 
equation the path loss PL will be  
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By solving the above equation we get 

 
 ( ) ( )10 1032.4 20log 20logL T GP f R G R= + + − −  (3) 

 
A rectifier circuitry with a high PCE is required to 

collect a considerable amount of the incoming RF signals 
from the antenna source. The key efficiency influences 
are known to be input power PIN, diode selection, 
junction capacitance, higher-order harmonics, operating 
frequency, and load resistance RL. When operating at a 
very low power level, such as -20 dBm, a diode that 
operates well at relatively high PIN levels does not have 
the same characteristics. The ratio of the power collected 
by the RF energy harvester to the RF input power 
received by the receiving antenna is the PCE of the RF 
energy harvester [45-47]. The PCE of the received RF 
signal can be calculated by the following equation.  
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where ƞPCE is the efficiency of the RF-DC rectifier, while 
PDC and PIN are the output and input power of the 
rectifier respectively. Maximum PCE can be achieved 
only when the antenna's output impedance and the load's 
impedance become conjugate to each other due to 
appropriate impedance matching. Fig. 4 shows the PCE 
of the input power level of the conventional rectifier and 
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Fig. 3. Block diagram of far field RF-DC energy harvester. 
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reconfigurable rectifier.  
The RF energy harvester's sensitivity can be described 

as the minimal value of Pin required to perform the RF 
energy harvester's operation. The RF power received is 
measured in the milli or micro-watt level, while the 
sensitivity is measured in decibels (dBm). The efficiency 
of the system is the major criteria for evaluating its 
performance. Efficiency is deduced by converting the 
input RF power and its sensitivity. Sensitivity is the 
measure of the least input RF power level to begin the 
scavenging process by the system. The sensitivity of a 
system can be calculated by the formula  

 

 ( )1010 logdBm mWP P=  (5) 
 
The power management unit (PMU) sets the number 

of rectifier stages to the maximum allowed by the design 
in order to produce the highest voltage at a low input 
power level while boosting sensitivity. The threshold 
voltage of the CMOS technology influences the RF 
energy harvester's sensitivity. The CMOS circuits with a 
low threshold voltage are more sensitive, but it also 
results in increased leakage current, which affects the RF 
energy harvester's overall PCE. Consequently, when a 
receiver is far away from an RF transmitter, it may only 
be able to interpret information and not be able to extract 
energy from the RF signals. As a result, enhancing the 
RF energy collecting circuit's sensitivity is critical. 

III. ANTENNA DESIGN AND IMPEDANCE 

MATCHING NETWORK 

1. Antenna Design 
 
An antenna is a type of radiofrequency sensor that 

detects RF signals. It senses the electromagnetic signals 
from the ambient environment. An antenna could be a 
single wire of varying lengths depending on the 
frequency wavelength, or it could be specially designed 
and built conductors on a certain material. In RF energy 
harvesting, the antenna plays a crucial role, with 

important factors such as directivity, reflection 11S , 

VSWR, gain, and so on. The 11S  of some different 

frequencies are shown in Fig. 5 The antenna gain is 
determined by the area occupied by the conductor and its 

form, whereas the directivity is determined by the type of 
antenna and the material used in the antenna. High gain 
antennas are preferable in terms of antenna gains since 
they boost conversion efficiency and the amount of 
captured energy. The radiation from an antenna might be 
isotropic or directed. A directional antenna can be used 
to improve the quantity of RF energy captured when the 
location of an RF signal source (transmitter) is known. 
An isotropic antenna can be used instead. The 
polarization of an antenna determines the direction of an 
electric field at a certain observation point. The 
conversion efficiency improves when both the 
transmitting and receiving antennas have the same 
polarization. The antenna polarization types are 
horizontal, vertical, circular, and elliptical. Multiple 
antennas are capable of harvesting more power [33, 48-
50], and this additional power may improve the RF-DC 
conversion efficiency [49-51]. However, utilizing 
multiple antennas increases the circuit size and costs [52]. 
Different antenna configurations for RF energy 
harvesting are described by the authors in [53]. In [54], a 
comparative examination of numerous antenna 
topologies is proposed. The structure of existing antennas. 
However, there is a trade-off between antenna 
performance and antenna size. [55, 56] have all 
implemented narrow-band antenna designs (up to tens of 
MHz). Dual-bands are also designed in [57-59]. 
Furthermore, current research has concentrated on 
broadband antennas [60-62].   

 
2. Impedance Matching Network   

 
The maximum power transfer theorem is the base of 

matching networks. The receiving antenna and the 
rectifier are both considered sources and loads in WPT 

Fig. 5. Reflection coefficient of 11S  Parameter for different 
frequency range. 
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applications. In DC circuits, it is well known that the 
most power is delivered when circuit resistances, and 
impedance, rather than the load and source are identical. 
A good match reduces the reflection of the collected 
input RF signal, which improves the performance of the 
impedance matching network. When the rectifier and 
antenna impedances are matched, the reflection drops to 
zero, reducing the reflected signal and increasing signal 
transmission from the antenna to the rectifier. The 
impedance matching circuit matches the impedance by 
resonating both the source and load impedances at a 
specific frequency by storing and discharging charges. 
As illustrated in Fig. 6 there are three basic types of 
matching networks for RF energy harvesting: L-type, π -
type, and T-type matching networks [61]. The L-
matching network is the most basic impedance matching 
network that has been developed and studied for the 
RFEH system [22, 58, 63, 64]. In the L-type matching 
network, the circuit's quality factor (Q) remains 
unchanged. As a result, Q cannot be freely chosen 
because it is determined by the matching factor which is 
the key constraint of the L-type matching network. A π-
type matching network and a T-type matching network 
are used to overcome this limitation. The quality factor 
of the matching network can be determined by the 
following equations    

 

 
.

Lost

EnergyQ
Power
ω

=  (6) 

Q is a measure of the energy stored in the reactance 
compared to the energy wasted by the resistance. We can 
calculate the quality factor Q of the capacitive reactance 
by the following equation  
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The π-type and T-type matching networks are more 

sophisticated than the L-type matching network, and the 
Q of the circuit is altered. These matching networks are 
useful for raising the RF input voltage levels and the 
overdrive voltage of the CMOS transistors in RF rectifier 
circuits. Two back-to-back L-type matching networks 
provide the foundation of the -type matching. Combining 
two L-type networks yields a -type network with a 
greater Q.  

Based on the fluctuation of impedance in the RF 
rectifier at different input power levels, [58] suggests a 
probability density distribution approach. This method 
decides the optimum value for the components to achieve 
the best performance of the impedance matching network 
circuit across the operating input RF power range when 
designing for an RFEH system. Three separate capacitors 
were used to try to balance the inductive component of 
the antenna. The control unit chose the appropriate 
capacitor based on the input power level. There is no 
need for an impedance matching circuit between the 

L Network

Zin
Z1

Z2 Zout

Reversed L Network

Zin
Z2

Z1 Zout

π  Network

Zin
Z2

Z1 Zout

T Network

Zin
Z1

Z2 Zout
Z3

Z3

 

Fig. 6. Impedance matching network (IMN) configuration.   
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antenna and the rectifier because of the same value of the 
impedance matching circuit. In [65] Instead of lumped 
components, an impedance matching network was built 
for ultra high frequency applications employing 
transmission lines and self-made metal-insulator-metal 
diodes. A Fixed and tunable Impedance matching 
network was also introduced as a technique for better 
matching with wide-band and multi-band antennas [65-
67]. A better dynamic impedance matching network was 
proposed in [70] for maximizing the captured energy. 

IV. RF-DC CONVERTERS  

This section review the various RF-DC Converter 
architectures, their circuit designs, and their advantages 
and disadvantages. Fig. 7 shows the block diagram of the 
RF-DC converter. The rectifier is the main block of the 
RF-DC energy harvesting system. The rectifier circuit is 
used to convert the input RF signal or AC signal to DC 
power. The rectifier of the RF energy harvesting system 
affects the overall efficiency of the system. Some 
rectifier circuit parameters that must be tuned to improve 
RF-DC power conversion efficiency includes operating 
frequency, input power level, input voltage level, 
parasitic effects, input impedance, and output impedance. 
For circuit implementation of RF-DC converters, a 
variety of methodologies have been used, including 
technology-based techniques and CMOS-based 
techniques. For circuit design of the RF energy harvester, 
technology-based methodologies traditionally use HSMS 
diodes and Schottky diodes because of their low 

threshold voltage. The active-circuit technique and the 
passive-circuit method are two approaches used in 
CMOS technology. The active circuit approach 
necessitates the use of an external battery to power the 
circuit and is most commonly employed in active RFID 
or active sensors. The rectifier described in [89] uses an 
external battery to provide a bias voltage using an active 
technique. [90] Presents a threshold voltage 
compensation scheme in which auxiliary transistors are 
used to generate the compensating voltage for the main 
rectification chain. The threshold voltage of rectifying 
devices has a significant impact on rectifier performance. 
The threshold voltage is the voltage at which the 
transistor must be turned on for the rectifier to operate. 
As a result, the number of stages in a rectifier must be 
carefully chosen, as it has a direct impact on the 
rectifier's performance. Though the output voltage of a 
rectifier can be increased by increasing the number of 
stages, the PCE of a multi-stage rectifier is reduced due 
to the greater voltage drop across the transistors. As a 
result, PCE and the number of stages of the rectifier are 
mutually exclusive. The rectifier's PCE decreases as the 
number of stages increases, and vice versa. A number of 
options for lowering the cost of living have been 
suggested. Table 2 performance comparison and 
summary of recent rectifier designs on Diode based and 
CMOS based. 

A rectifier can be configured in three ways: (a) diode-
based [91], (b) bridge of diodes [92], and (c) voltage 
multiplier. A rectifier circuit's most important component 
is the diode. The saturation current, junction capacitance, 
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Fig. 7. Block diagram of RF-DC converter. 
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and conduction resistance of the diode are all important 
factors in the rectifier's performance [93]. The PCE of 
the rectifier circuit is determined by the diode's 
performance. Fig. 8 shows the basic topologies of the 
rectifiers which include (a) half-wave rectifier topology 
(b) full-wave rectifier topology and (c) bridge rectifier 
topology. The peak level of the AC voltage signal is 
represented by Vpeak. There is only one diode D1 in the 
half-wave rectification circuit.  

The positive voltage cycle goes through the input of 
the half-wave diode D1, while the negative voltage cycle 
is lost. This method is the simplest in terms of RF energy 
harvesting, however, it is not ideal for all applications. 
Two diodes D1 and D2 and two capacitors C1 and C2 
make up the full-wave rectification circuit. The diode D2 

is turned off when the diode D1 conducts a negative 
voltage cycle and the capacitor C1 is charged to the Vpeak 
voltage level. Similarly, the diode D2 conducts the 
positive voltage cycle and charges the capacitor C2, while 
the diode D1 remains off. As a result, the full-wave 
rectification's output voltage VOUT is equal to double the 
Vpeak out voltage level over a period of time. Full-wave 
rectification is more efficient than half-wave rectification 
in terms of RF energy harvesting. There are four diodes 
in the bridge rectification circuit: D1, D2, D3, and D4. The 
diodes D1 and D4 are turned off when the diodes D2 and 
D3 conduct the positive voltage cycle for half a period. 
The diodes D1 and D4 conduct the negative voltage cycle 
over a half-cycle, while the diodes D2 and D3 are turned 
off. As a result, the bridge rectification's output voltage is  

Table 2. Performance Comparison and summary of recent RF-DC rectifiers 

References Year Technology Frequency Peak PCE @  
RF Input power 

Output Voltage @  
RF input power 

CMOS Technologies 
[68] 2016 250 nm CMOS 13.56 MHz 72% @ 1 Vp-p N.A 
[69] 2017 180 nm CMOS 433 MHz 65.3% @ 15.2 dBm 1 V @ -17 dBm 
[70] 2019 130 nm CMOS 896 MHz 51 % @ -11 dBm N.A 
[71] 2014 90 nm CMOS 868 MHz 40% @ -17 dBm 1 V @ -27 dBm 
[54] 2013 90 nm CMOS 868 MHz 31.5 % @ -15 dBm 1 V @ -26.3 dBm 
[72] 2013 130 nm CMOS 868 MHz 58 @ -3 dBm 2 V @ -16 dBm 

[9] 2020 180 nm CMOS 902 MHz 33 % @ -8 dBm 
20 % @ -18 dBm 3.23 @ -8 dBm 

[5] 2019 180 nm CMOS 900 MHz 
48.2% @ 0 dBm 

31.8% @ -20 dBm 
41.1% @ 20 dBm 

3.23 V @ 0 dBm 

[73] 2017 65 nm CMOS 900 MHz 36.5% @ -10 dBm 2.3 V @ -10 dBm 

[74] 2022 180 nm CMOS 900 MHz 
2.4 GHz 

38.5% @ -12 dBm 
26.5% @ -6 dBm 4.8 V @ -12 dBm 

[75] 2017 180 nm CMOS 915 MHz 26% @ 0 dBm 1 V @ -14.8 dBm 
[77] 2017 130 nm CMOS 953 MHz 73.9% @ 4.34 dBm 3.5 V @ -12 dBm 
[77] 2015 130 nm CMOS 915 MHz 32% @ -15 dBm 3.2 V @ -15 dBm 
[78] 2014 130 nm CMOS 915 MHz 22.6% @ -16.8 dBm 2.2 V @ -16.8 dBm 
[79] 2019 65 nm CMOS 2.45 GHz 48.3% @ -3 dBm N. A 
[69] 2016 180 nm CMOS 2.4 GHz 38.4% @ 0 dBm 1.25 V @ -22 dBm 
[80] 2016 130 nm CMOS 2.40 GHz 30% @ 10 dBm N.A 
[81] 2014 180 nm CMOS 2.4 GHz 46% @ 8.9 dBm 1.3 V @ 8.9 dBm 

Diode Technologies 
[82] 2013 HSMS-286B 13.56 MHz 55% @ -30 dBm 1.9 V @ -30 dBm 
[52] 2014 HSMS-2852 900 MHz 75% @ -10 dBm 1.3 V @ -10 dBm 

[83] 2013 HSHS-2852 900 MHz 
2.4 GHz N. A. 2.2 V @ -10 dBm 

0.4 V @ -20 dBm 
[84] 2013 HSMS-2850  2.45 GHz  N. A.  0.55 V @ -15 dBm  
[85] 2019 SMS-7630 2.45 GHz  37.5% @ 13 dBm  12 V @ 13 dBm  
[90] 2017 HSMS-2860  5.8 GHz  71% @ 14.77 dBm  5.2 V @ 14.77 dBm  
[87] 2017 HSMS-286C  5.8 GHz  64.1% @ 24 dBm  5.1 V @ 24 dBm  
[88] 2019 MA4E1319-1 5.8 GHz  73.1% @ 27 dBm  34.2 V @ 27 dBm  
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at the Vpeak voltage level [61].  
Fig. 9 shows different voltage multiplier topologies i.e 
(a) two-stage voltage multiplier, (b) forward self-
compensated NMOS transistors, (c) Diode connected 
Dickson voltage multiplier, and (d) Dickson voltage 
multiplier. The literature [94-98] has a variety of voltage 
multiplier topologies. Fig. 9(a) shows the differential 
voltage multiplier which is broadly used due because of 
its low leakage current property. However, for the 
conversion of single-ended to differential or differential 
antenna, differential circuits require a PCB balun, which 
adds to the cost and takes up space on the PCB board. 
Reference [99] provides a full explanation and study of 
differential multipliers. Several approaches to lowering 
the rectifying devices' threshold voltage have been 
proposed. Different Rectifier designs range is needed that 
adjust the threshold voltage of rectifying devices and 
maintain the high PCE of the rectifier throughout a wide 
input RF power. Fig. 9(b) shows a modified self-
compensation circuit in which the gate terminals of a 

diode-connected NMOS transistor are connected to later 
stages to provide compensatory voltages. Cascading the 
multiple rectifier stages raises the overall output voltage. 
Individual body biasing provided by the triple-well 
diode-linked NMOS transistors reduces the fluctuation in 
threshold voltage between stages. These triple-well 
NMOS transistors, on the other hand, aren't necessarily 
compatible with other circuits. Furthermore, the triple-
well configuration introduces parasitic capacitance at 
each node, resulting in increased losses. Furthermore, 
subsequent stage dummy NMOS transistors are not 
threshold adjusted, leading to extra power loss. Fig. 9(c) 
shows the circuit diagram composed of the NMOS 
Dickson voltage multiplier. For low power harvesting 
applications, the circuit is changed by supplying an input 
signal at Ф1 and grounding Ф2 [100]. The most 
prevalent voltage multipliers in wireless energy 
harvesting systems are Villard and Dickson voltage 
multipliers. Even with a relatively large parasitic 
capacitance value, the Dickson multiplier achieves 
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Fig. 8. Basic rectifier topologies: (a) Half wave rectifier; (b) Full wave rectifier; (c) Bridge rectifier.   
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efficient multiplication when compared to the Cockroft-
Walton multiplier. The Dickson topology is well-suited 
to low-power applications, and voltage multipliers for RF 

energy harvesting are commonly built on it. As the 
charge is transported along with the diode chain the 
multiplier functions by sequentially charging and  
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Fig. 9. (a) Two stage differential multiplier; (b) Forward compensated NMOS transistors; (c) NMOS Dickson voltage multiplier; (d) 
Dickson voltage multiplier. 
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discharging the coupling capacitors during each phase of 
the clock. To achieve efficient voltage multiplication, 
coupling capacitor C must be bigger than the parasitic 
capacitance of the diode as the number of stages 
increases. Dickson voltage multiplier, as depicted in Fig. 
9(d) [94], has been proposed to overcome this constraint.  

Fig. 10(a) and (b) show the block diagram and 
flowchart of the proposed Maximum Power Point 
Tracking (MPPT) for regulating and adjusting RF-DC 
converter stages by adding and controlling switches, 
respectively. As the RF power is not a fixed quantity and 
can change depending on the surroundings and 
environment, the harvested energy can be used instantly 
by the load, even in low-power applications. The 
optimization of RF energy harvesting must be done in the 
most adverse conditions feasible. The MPPT algorithm is 
used in the proposed RF-DC converter to automatically 
determine the number of stages based on the RF input 
power level and maintain the maximum PCE at the 
output. In order to operate the reconfigurable RF-DC 

converter, the control switches ( nSW , nSW ) are 

combined in each step.   
Fig. 11 presents the proposed MPPT's timing diagram 

for selecting the optimal number of stages by regulating 
the switches. The charging time of VOUT from VREFL to 
VREFH was measured using a digital counter in the 

proposed MPPT algorithm. When 1-stage and 2-stage are 

switched on, ( 2SW , 3SW  to nSW ) is turned on while 

( 2SW , 3SW , and nSW ) are turned off, the internal 

counter changes L to a new counted value in relation to 
VOUT charging time. M and L, the two following counted 
values, are then compared. When L is less than M, the 
charging time is longer and the output power is higher. 
When L is more than M, however, the charging time is 
longer and the output power is lower when 1-stage and 2-
stage are turned on. The counted value is continuously 
decreased until the N number of phases is enabled, and 
vice versa. The MPPT Controller completes the MPPT 
algorithm by locking with the corresponding switches.  

Fig. 12 presents the block diagram of the 
reconfigurable RF-DC converter. Fig. 12(a) shows the 
series path operation and Fig. 12(b) shows the parallel 
path operation respectively. In a series operation, the 
comparator compares the proposed circuit's output 
voltage (VOUT) to a reference value (VREF). The 
comparator gives low-voltage "VCMP=L" and the 
inverter gives high output "H" as long as VOUT is less 
than VREF. To allow the two identical rectifier blocks to 
work in series, this mechanism turns on the switch SW1 
and turns off the switches SW2 and SW3. This boosts the 
harvested power at the output and, as a result, increases 
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Fig. 10. Maximum Power Point Tracking (MPPT): (a) Block diagram; (b) Flowchart algorithm. 
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the PCE of the proposed technique at low input power 
levels. Similarly, when VOUT exceeds VREF in the 
parallel-path operation of the proposed circuit for a high 
input power range, the comparator produces high voltage 
"VCMP = H" and the inverter produces low voltage "L." 
At high input power levels, this improves the PCE of the 
proposed method. As a result, the proposed 
reconfigurable circuit's total PCE is extended and 
improved over a wider range of input power.   

Fig. 13 presents the circuit diagram of the 
reconfigurable RF-DC converter [13]. The proposed 
architecture uses the internal threshold voltage 
compensation technique (IVC) to compensate for the 
threshold voltage of the transistors used in the 
architecture. In the primary rectification chain, the 

transistors Ma and Mb reduce the Vth of forward-biased 
transistors and minimize the reverse leakage current of 
reverse-biased transistors, respectively. The back 
compensated transistor Ma reduces Vth of the forward-
biased transistors (Mp1 and Mp2) and enhances harvested 
power in the main rectification chain during a positive 
phase of input power, as illustrated in Fig. 13(a) The 
rectifying devices Mp1 and Mp2 are reversed-biased 
during the negative phase of input power, as shown in 
Fig. 13(b) and Vsg of Mb is greater than Vth to switch it 
on. This reduces the leakage current in the rectification 
chain by lowering the source-gate voltages (Vsg1 and 
Vgs2) of transistors (Mp1 and Mp2). Both forward and 
reverse conduction produce the voltage drop (Vaux) 
across capacitor Caux, which can be expressed as:   

VREFH

VREFL

ST_MPPT

END_MPPT

CNT_NEW

CNT_PRE

RESH_CONT

STAGE_CONT

STAGE_LOCK

MN

ND

L

M

Default
M < N

1 2
L > M

1

Stage Lock

VOUT

Time

 

Fig. 11. Maximum power point tracking (MPPT) timing diagram. 
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 ( )AUX AUX FWD REVV V Q Q= × +  (8) 
 
Fig. 14 shows that the RF EH system should be 

combined with the WPR system to boost charging 
distance and power levels simultaneously. Combining the 
WPR and EH systems not only expands the area 
marginally but also adds a significant burden. It is 
possible to receive high power using the WPR system in 
the environment where the A4WP transmitter is 
configured and to transfer power using the EH when the 
distance to the transmitter is great. These systems can 
have a significant effect in terms of the power supply 
based on distance. Furthermore, effective power 

management must be proposed in order to effectively 
regulate the best power sources.  

The suggested hybrid EH system, shown in Fig. 14 
combines solar energy harvester, triboelectric energy 
harvester, and RF energy harvesters to improve the 
WPR's overall efficiency and reliability. By increasing 
the operation range from micro-Watt (Ws) power to 3 W 
power level, the suggested design assures continuous 
power supply at its load via a simultaneous EH 
mechanism. The hybrid EH architecture uses a tetra-path 
to harvest different types of energy in order to keep the 
system's power conversion efficiency (PCE) high 
throughout a wide input power range. All EH pathways 

VIN
CIN

MN MP

Cs1
VRECT

Cs3

M3

Cs2

M1 M2

VIN
CIN

MN MP

Cs1
VRECT

Cs3

M3

Cs2

M1 M2

                         (a)                                                   (b) 

Fig. 13. Circuit diagram of Reconfigurable RF-DC Converter: (a) Positive phase; (b) Negative phase operation. 
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are active at the same time, harvesting energy from the 
environment. The high-power path and the low-power 
path are two paths in the RF energy harvester. The high-
power path includes a 5.8 GHz RF-DC converter with a 
maximum RF input power of 3 W. The designed 5.8GHz 
RF-DC converter structure work for mid filed 
applications to harvest energy from the ambient source. 
The suggested circuit effectively converts high RF power 
to output dc voltage using 6 parallel stages and a 1-stage 
Dickson charge pump configuration. Following the on-
chip adaptive matching network, the RF input power is 
distributed equally among the six parallel stages. 
Because 24-V Schottky diodes function effectively at 
high RF input power levels, their primary utility is to 
prevent diode breakdown at high RF input power levels. 
The six parallel stages operate concurrently to transform 
RF input power into output dc voltages. The storage 
capacitor stores the total output dc voltage from all stages 
and transmits it to the dc combiner circuit. Similarly, a 
dual-band (900 MHz and 2.4 GHz) RF-DC converter 
with a sensitivity of -17 dBm makes up the lower power 
route. The designed structure is composed of two Dickon 
charge pumps which are connected in parallel and 
maintained the high PCE over a wide input power range. 
The dc combiner circuit feeds the voltage (VIN) to the 
buck-boost dc-dc converter from the 5.8 GHz RF energy 
harvester and the solar energy harvester outputs. 
Depending on the availability of solar energy, RF energy, 
or both, the dc energy combiner functions in an 
individual or combination mode. For input voltages 
ranging from 3 to 8 V and load currents ranging from 
100 to 500 mA, the proposed buck-boost dc-dc converter 
delivers a controlled output dc voltage (VOUT) of 5 V. 
The buck-boost dc-dc converter's VOUT. The battery 
eventually stores this information. The outputs of the 
dual-band RF energy harvester and the triboelectric 
energy harvester are combined and delivered to the buck-
boost dc-dc converter, which produces a regulated VOUT 
of 5 V. The high reliability of continuous supplying 
power at load is due to the simultaneous operation of 
different energy harvesters’ overextended input power 
range.  

V. CONCLUSIONS 

In recent years, the state-of-the-art in RF power 
harvesting technologies has been reviewed in this work. 
The antenna, impedance matching network (IMN), and 
RF-DC converter are the three essential modules in an 
RF power-harvesting system. Aside from recent 
advancements, there are still a number of areas in which 
RF power harvesting technology can be improved, such 
as operation range can extend, transmission loss can be 
reduced, PCE can be maximized, and the system 
dimensions can be reduced. Furthermore, RF-EH 
research in collaboration with other research such as 
implantation circumstances or underwater zones is 
gaining widespread focus and emphasis. A lot of interest 
has been put forward in RF-EH in order to expand the 
technology's potential. Even though there are still many 
problems to overcome, research in RF-EH technology is 
progressively increasing. By overcoming these 
challenges, the power industry can usher into a new era 
of clean, sustainable energy. 
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