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Abstract—Noise-shaping  successive-approximation-
register (NS-SAR) ADCs have become one of the most
promising candidates for high-resolution data
converters over the past decade. This is due to the fact
that they combine the advantages of delta-sigma
and SAR ADCs. In this hybrid

architecture, the quantizer and residue feedback DAC

modulation

can be replaced by SAR, a replacement which
achieves high SNR while also benefiting from
superior power efficiency and low cost. For NS-SAR
ADCs, various implementations of loop filters for
residue processing exist that can realize the noise
transfer function (NTF) for NS effects. In addition,
many noise reduction techniques have been proposed
that suppress additional noises not shaped by NTF.
This paper describes the basics of NS-SAR ADCs
while also reviewing noise reduction techniques,
which include the implementation of a loop filter for
residue handling, KT/C noise rejection, and capacitive
DAC mismatch error shaping. It also outlines
advanced architectures that can overcome the
limitations of NS-SAR ADCs.
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I. INTRODUCTION

Modern IoT devices demand high resolution, power
efficient ADCs for sensor interfaces such as human body
communication, edge computing, and biomedical sensors.
Successive approximation register (SAR) ADCs are
architectures that are well known for their technology
scalability. They are also recognized for their power and
area efficiency due to their digitally based building
blocks.
maintaining the advantages of SAR ADCs is problematic

However, realizing high resolution while
due to thermal noise such as kT/C and comparator noise.
This is because in order to mitigate such noise, the
resolution of the CDAC must be increased. Additionally,
a low-noise comparator that consumes a lot of power is
also required. In the case of CDAC, total capacitance
increases exponentially with resolution, which occupies a
large area while increasing the power consumption of the
driving buffer as well. Given these factors, the benefits of
SAR ADCs tend to diminish with increasing resolution.
On the other hand, delta-sigma modulation (DSM)
architectures are traditionally regarded as the most
promising candidates for high-resolution ADCs due to
shaping  (NS)
characteristics. While these noise reduction effects do

their ~ oversampling and noise
indeed improve SNR performance by suppressing overall
noises, the disadvantage is that DSM architectures
require power-hungry op amps, which occupy large areas
and cannot easily scale with technology. Furthermore,
flash ADC used as a multi-bit quantizer in DSM
architectures typically offers lower resolutions, which in
turn require a higher oversampling ratio (OSR) to
achieve high SNR. It leads to a decrease in power
efficiency.
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Fig. 1. Power efficiency comparison between NS-SAR ADCs
with conventional architectures [42].

Therefore, NS-SAR ADC, a hybrid architecture that
combines DSM and SAR ADC to achieve high SNR
while maintaining both advantages, has become a
promising candidate for high-resolution ADCs in recent
years [1-41]. In this hybrid architecture, the SAR ADC is
used as a multi-bit quantizer and concurrently as a
feedback DAC which processes the residue to achieve
noise shaping performance.

Fig. 1 compares the NS-SAR ADCs with conventional
SAR and DSM ADCs, which have been published in
major conferences [42]. The solid line and dashed line
indicate 180 dB of Schreier Figure-of-Merit (FoMg as
shown in Eq. (1)) and 5 fJ/c.-s of Walden FoM (FoMy, as
shown in Eq. (2)), respectively. It shows that NS-SAR
ADCs are pioneers in terms of power efficiency, as
compared with conventional architectures. Reference [36,
37] have reviewed the NS-SAR ADC to show the
development of this architecture.

FoMS:SNDR+1010g[ /s j (1)
power

power

2(5NDR—1.76)/6.02 % % fB

FoM,, = 2)

In this paper, the fundamentals of the NS and the
advances in noise reduction techniques for NS-SAR
ADCs are reviewed. In particular, the loop filter
implementations have been described in depth. The rest
of this paper is organized as follows. Section II provides
the basic of NS-SAR ADCs
oversampling and NS mechanisms. Section III outlines

concept including

the noise reduction techniques employed to realize NS
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Fig. 2. Quantization noise and noise transfer function (NTF).

characteristics with residue processing loop filters while
Section IV introduces kT/C noise cancellation and
CDAC mismatch error shaping (MES). Finally, Section
V presents the advanced architectures employed to
overcome the limitations of NS-SAR ADCs and Section
VI concludes this paper.

I1. BASIC OF NOISE-SHAPING (NS)
SAR ADCs

1. Oversampling

Oversampling is a common method of improving the
SNR by reducing quantization noise. The oversampling
ADC samples and quantizes the input signal at a much
higher sampling rate than the signal band. Therefore, a
small fraction of quantization noise falls into the signal
band making it possible to filter the out-band noise as
shown in Fig. 2. The reduction of quantization noise by
oversampling can be quantified as Eq. (3). For better
understanding, the signal-to-quantization noise ratio
(SQNR) is considered rather than SNR.

P,
SONR = 1010g[P”—g""']+lOlog(OSR) 3)

q,noise

where P, and F,,. denote signal and quantization
noise power, respectively. The OSR is the ratio between
the signal band (f;) and Nyquist range ( f5/2).
According to the above equation, there is only a 3-dB
improvement in SQNR when OSR is doubled. Therefore,
a very high OSR is required for high-resolution ADC
designs, which has the effect of degrading power
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Fig. 3. (a) Block diagram of the 1st-order DSM; (b) signal flow
diagram.

efficiency. To overcome this limitation, NS schemes are
widely used along with oversampling.

2. Noise Shaping (NS)

Noise shaping is an essential technique and a basic
concept of oversampling ADCs to enhance noise
reduction effects. This is achieved by attenuating in-band
noise through a high-pass noise transfer function (NTF)
as shown in Fig. 2. The lst-order DSM can be an
example for presenting the NS mechanism.

The 1st-order DSM consists of a quantizer, a feedback
DAC, and an integrator as described in Fig. 3. The
quantizer digitizes analog input with feedback DAC
converting this digitized data to an analog signal and
subtracting from input, making residue voltage that

contains quantization noise. Eq. (4) shows a transfer

function including quantization noise, Q(Z ) .

__H(?)
1+H(z)

V,N(z)+#(z)Q(z) (4)

D()UT (Z)
If the H (z) is a simple discrete-time integrator,
H(z)=z" /(1—271), then D,,, (z) can be expressed

as follows.
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Fig. 4. SQNR improvement by oversampling with and without
NS.

Eq. (5) shows a simple delay signal transfer function
(STF), z', and a high-pass NTF, 1—z"'. Therefore,
the SQNR including in-band noise attenuation by NTF
can be expressed as Eq. (6).

R[ nal
SONR =10log| —— &

10log(OSR
><IBNG]+ og( ) ©

q,noise

Note that IBNG denotes in-band noise gain, which is
/5

IBNG = [ (|NTF () / 1, )df . TENTE is assumed to be
0

1-z", Eq. (6) can be approximated as follows.

Psignal 7[2
SONR ~10log [P—J ~101log (?] +30log(OSR)

q,noise

()

Eq. (7) shows that the SQNR increases 9-dB when
OSR is doubled. Fig. 4 SQNR
improvement between oversampling with and without
NS.

compares the

3. Noise-shaping (NS) SAR ADCs

NS-SAR ADCs have been proposed as a means to
overcome the shortcomings of DSM ADCs while
obtaining similar NS characteristics [1]. The proposed
architecture replaces a quantizer and a feedback DAC of
CIFF-DSM as a SAR ADC as shown in Fig. 5(a). And it
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Fig. 5. (a) Block diagram of NS-SAR ADC; (b) signal flow
diagram [1].

realizes the NS using a finite-impulse-response and
infinite-impulse-response (FIR-IIR) loop filter. The
switched-capacitor FIR filter samples the residue and IR
filter integrates this residue. The signal-flow diagram
including the FIR-IIR loop filter can be modeled as in
Fig. 5(b). Therefore, the overall transfer function is given
by Eq. (7).

1

Do (2) =V () 580

o(z) (1

Even though [1] achieves a sharp NTF as shown in Fig.

6, the SNDR is limited due to additional noise generated
by the FIR-IIR filter. Furthermore, a power-consuming
amplifier is still required. To overcome these limitations,
various noise reduction techniques have been proposed.
In this paper, the NS-SAR ADCs are classified into
active and passive topologies based on the loop filter
implementations, which are reviewed in more detail in
the following section.

II1. NOISE REDUCTION TECHNIQUES WITH
RESIDUE PROCESSING

The most important factor of NS-SAR ADCs is how to
extract the residue and sum it with the following input

20

—— FIR-IIR-based NS-SAR ADC [1]
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Fig. 6. NTF comparison between NS-SAR [1] and 1st-order
DSM ADC.

signal. There are thus two concerns 1) how to process the
residue and 2) how to implement the loop filter. With
regard to residue processing, both cascaded-integrator-
feed-forward (CIFF) and error-feedback (EF) are
CIFF
structures have a feed-forward path to process the residue

common implementations. In general, the
and sum it to the following input using a multi-input
comparator, whereas the EF structures have a feedback
path and sum the residue to the input voltage directly on
CDAC. Note that the multi-input comparator introduces
extra noise in CIFF and the charge-sharing summation in
EF induces signal attenuation.

Fig. 7(a, b) and 8(a, b) shows signal flow diagrams and
circuit implementations of CIFF and EF structures,
respectively. The corresponding transfer functions are as
follows.

1
V. _—
i (Z)+ 1+H(z)z’1

D, (z)z Vi (z)+(l—E(z)z’1)QN (z) 9

Dyyr (Z) = o, (Z) ®)

From the circuit implementation of each structure, Eq.
(8) and (9) can be translated to Eq. (10) and (11),
respectively.

Doy (2) =V (1) 4 —=29%2 o2y (10)
our ‘N 1+1.28271+0.64z72

14 30 , 30 _
D()UT (Z):EVIN (Z)+(1—EZ 1+3—22 2jQ(Z)

(In
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Fig. 8. (a) Signal flow diagram; (b) circuit implementation [13]
of EF structures.

Note that, the CIFF structure needs a high-gain
integrator to achieve ideal high-pass NTF. On the other
hand, the EF structure does not require a high gain
integrator but requires a high accuracy opamp. This is
because the gain of opamp directly controls the zero of
NTF.

Thus, while there are many efforts to alleviate the
burden of high gain integrator and multi-input
comparator in CIFF structure such as passive integration

and capacitor stacking, gain calibrations are introduced

Table 1. Comparison between CIFF and EF

Residue Gain

Structure Summation Gain Sensitivity Limitation
CIFF Multi-input High Low Extra noise
comparator
EF Charge- | 1o fium High Signal
sharing attenuation

to precisely control the gain of opamp in EF structures.
Table 1. summarizes and compares the CIFF and EF
structures.

In terms of loop filter implementation, the loop filter
for realizing the NTF of each structure is implemented in
two ways, namely active and passive topologies.
Generally, an active strategy uses op amps whereas the
passive strategy uses simple switches and capacitors to
process the residue. More details of these loop filters are
provided in the following sections.

1. Active Loop Filter

Active loop filters show flexible and sharp NTF
because the amplifier provides sufficient gain. However,
the active amplifier consumes large amounts of power
which degrades the efficiency of NS-SAR. Therefore,
much effort has been expended in a bid to reduce the
power consumption of active strategies.

As discussed in the previous section, the first
implementation of NS-SAR ADC is an active strategy
using the FIR-IIR loop filter proposed in [1]. The
switched-capacitor FIR filter and the active-amplifier-
based IIR filter samples and integrates the residue,
respectively. However, the proposed architecture
presents only moderate SNDR performance, even though
it has sharp NTF, because the passive residue sampling
introduces considerable kT/C noise, with the active
amplifier also introducing more noise. Improving noise
performance requires the addition of large capacitors for
residue sampling, while high-gain, power-consuming
amplifiers are required in the IIR filter if the additional
noise is to be mitigated.

To relieve the trade-off between kT/C noise and gain
loss due to charge sharing in switched-capacitor FIR
filter, an input buffer, implemented as an open-loop
amplifier between CDAC and residue sampling capacitor,
is required [6] as shown in Fig. 9. Although it provides a
gain of 2 alleviating kT/C noise in the FIR filter, the
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Fig. 10. FIR-IIR loop filter with dynamic amplifier and
switched-capacitor implementation [10].

input buffer and active amplifier in the IIR filter together
consume 37% of the total power.

In [10, 11], the open-loop dynamic-amplifier-based
FIR-IIR filter is proposed as a means of reducing these
extra power consumptions. Reference [11] replaces the
input buffer and active integrator with low power open-
loop dynamic amplifiers and [10] proposes a gain-
enhanced dynamic amplifier as the input buffer.
Moreover, [10] greatly reduces the residue sampling
capacitor, such that the active-amplifier-based IIR filter
can be substituted by a simple switched-capacitor
integrator as shown in Fig. 10. However, the drawback is
that the open-loop dynamic amplifier is sensitive to PVT
variation, which degrades the NTF and limits the NS
performance. To compensate for this drawback, [13]
proposes background calibration for dynamic amplifiers
which increases design complexity.

Reference [25] proposes a calibration-free PVT-robust
closed-loop 2-stage dynamic amplifier to simplify the
design complexity of the calibration as illustrated in Fig.
11. Due to the fact that the gain of the closed-loop

Doun(z
DAC [SaR J—eu®

Lv_.@/?_"_}ﬁ_'_le__lzll>J

Fig. 11. PVT-robust closed-loop 2-stage dynamic amplifier
[25].

Dout(z)

Fig. 12. Fully passive NS-SAR ADC [2].

amplifier is set by capacitor ratios, it is robust in the
presence of PVT variations. In [27] and [29], the PVT-
insensitive voltage-time-voltage converter and PVT-
robust source follower-based unit gain buffer for active
residue processing are proposed , respectively.

2. Passive Loop Filter

A passive loop filter is a simple, PVT robust, and
scaling-friendly strategy because it consists of switches
and capacitors. It is more power-efficient than an active
loop filter given that it does not need a power-consuming
amplifier. However, the passive strategy suffers from
charge sharing in switched-capacitor operation and
shows mild NTF due to the insufficient gain. Therefore,
many efforts have been expended on reducing the charge
sharing and providing adequate gain for the passive loop
filter.

The first fully passive NS-SAR ADC is proposed in
[2]. The proposed architecture utilizes the switched-
capacitor circuit for the purpose of residue sampling and
integration. Residue summation is realized by a multi-
input comparator as shown in Fig. 12. However,
switched-capacitor residue sampling attenuates the input
signal by factor of 2 while the charge sharing of residue
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integration degrades NTF. This architecture is improved
in [3] to 2nd-order NS. The 2nd-order NS is realized with
the application of capacitor stacking [43] thus achieving
passive gain but this does nothing to resolve signal
attenuation limitations. Reference [4, 8] eliminates this
signal attenuation and realizes sharper NTF than [2, 3].
In addition, the relative gain between input signal and
integrated residue is realized through the input transistor
sizing of the multi-input comparator as shown in Fig. 13.
The multi-input comparator not only provides relative
gain but also realizes signal summation. However, the
large extra input pair which provides relative gain also
introduces additional thermal noise, while the residue
sampling and integration introduce extra unshaped kT/C
noise, increasing the overall noise.

To alleviate the extra thermal noise from the multi-
input comparator, [18] proposes a passive signal-residue
summation scheme as shown in Fig. 14. This architecture

achieves the residue summation by serialization of

Residue Integration

A A A A
Vin 2CDAc-l- 1— -l- T VE\IT
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— DAG,
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4
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— DACy
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Fig. 15. Passive residue integration with 4x passive gain using
capacitor split and stacking [23].

I SAR

CDAC and
differential residue sampling on back-to-back capacitors

integration capacitor. Moreover, the
provides a passive gain of 2 thereby eliminating the
multi-input comparator. Even so, it achieves only 2x
passive gain so resulting in mild NTF while the small
residue sampling capacitor introduces large kT/C noise.
In [23], the differential integration with split capacitor
and capacitor stacking are presented as described in Fig.
15. This scheme eliminates residue sampling and
provides 4x the passive gain, which obviates the need for
a multi-input comparator. Therefore, it reduces the kT/C
and comparator noise significantly. However, it remains
difficult to increase gain because the passive gain using
capacitor stacking is sensitive to parasitic capacitance.

IV. ADDITIONAL NOISE AND ERROR
REDUCTION TECHNIQUES

Although the NTF efficiently suppresses quantization
and comparator noise, additional noise and error that are
not shaped by NTF remain. These additional non-
idealities, such as the CDAC mismatch-induced error and
kT/C noise, serve to limit the SNDR of the NS-SAR
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Fig. 16. Signal flow diagram of (a) CIFF; (b) EF structures
including noise from CDAC mismatch.

ADCs. This section, therefore, presents the noise and
error reduction techniques to mitigate these additional
non-idealities.

1. CDAC Mismatch

The CDAC mismatch introduces additional unshaped
errors which cause harmonic distortion and increase the
in-band noise floor. It can be modeled as an additive
noise, €(z), in a loop filter as shown in Fig. 16. Then

Dy, (z) can be expressed as follows.

DUUT(Z)=V1N (Z)+m

Dy (z) =V, (Z)+(1—E(Z)Z_l )QV (Z)+ 8(2) (1)

0, (z)+e(2) (10)

Calibration and mismatch shaping (MS) are commonly
used methods to relieve the CDAC mismatch. The first
one, calibration, including both the foreground and
background method, compensates for CDAC mismatch
in the analog and digital domain, and thus it can cancel
errors from the CDAC mismatch. Foreground calibration
is more widely used than the background method due to
the greater simplicity of its implementations. However,
foreground calibration needs additional calibration phase
interrupting normal operation of ADCs.

The second one, MS suppresses the in-band noise and
distortion from CDAC mismatch. The well-known MS

»{ Unit CDAC
DEM
CTRL »| Unit CDAC
k—bit DEM DAC()[ I

—>»| Encoder ]
(ESL) : Unlt CDAC

Y

Unit CDAC

Fig. 17. Block diagram of a simple DEM.
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VIN e
>
Sampling Phase

a-2Eu@) [N DA€

VIN
——

Conversion Phase

(b)

Fig. 18. Block diagram of a simple MES: (a) sampling phase;
(b) conversion phase.

are the dynamic elements matching (DEM) [44] and
data-weighted averaging (DWA) [45]. An element
selection logic (ESL) randomizes and rotates the DAC
capacitor as shown in Fig. 17. Therefore, the DEM and
DWA suppresses and shapes the in-band harmonic
distortion and noise, respectively. The drawbacks of
these DEM-based MS methods are complexity and long
delay. If higher order shaping is to be achieved, more
complicated logic is required, with ESL complexity
growing exponentially as CDAC resolution increases. To
limit complexity of the ESL, some designs shuffle only a
few MSBs, despite the continuing presence of errors
from LSBs.

Another MS technique is mismatch error shaping
(MES) [6]. Conceptually, it is similar to the NS
mechanism. It captures the mismatch error and feeds it
back by presetting the LSBs of CDAC before sampling.
Fig. 18 illustrates the 1st-order MES operations. During
the sampling phase (in Fig. 18(a)), the LSB parts are

preset to hold the previous mismatch error, z E, (z).
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Fig. 19. (a) Simple sampling circuit; (b) its equivalent noise
modeling [46].

Following this, the LSB parts are reset in the conversion
phase (in Fig. 18(b)) to subtract the previous error from

the current error, E, (z)—z'E, (z) . Therefore, it

realizes a high pass shaping of the CDAC mismatch error,
(1 -z )EM (z). The MES is easier to implement than

DEM because it does not require complex logic.
However, the MES suffers input dynamic range loss due
to LSB presetting.

To alleviate this loss, references [6, 23, 40] apply the
DEM or DWA for the MSBs and MES for LSBs. These
references can also mitigate the complexity of DEM-
based implementations by applying DEM techniques to
only some MSBs.

2. KT/C Noise

Sampling kT/C noise is one of the unshaped noises in
NS-SAR ADCs. Even though oversampling relieves
kT/C noise by OSR, the disadvantage is that increasing
OSR limits the signal bandwidth. Fig. 19 shows sampling
circuit and its equivalent noise modeling. The on-

resistance of the sampling switch introduces the noise
power spectral density (PSD) of 4kTR,,

equivalent noise bandwidth (ENBW) is 1/4R,,C;. For

and its

a simple single-pole system, the total noise power (E)

can be expressed as the product of the PSD and ENBW
[46].

V2 = 4kTR,, X

4R()NCS C_S (12)

Therefore, only the sampling capacitor appears in total
noise power. Reference [46, 47] propose a kT/C noise
reduction scheme using feedback topology by decoupling
the noise PSD and ENBW. Fig. 20(a) and (b) shows a
sampling circuit with a single-stage and two-stage

Fig. 20. kT/C noise reduction using feedback topology with (a)
single-stage; (b) two-stage amplifier [46, 47].

Comparator

Cs Cxy
V=l Sl
VkTe Avire
$Pre-amp 1 Latch

Fig. 21. kT/C noise cancellation using series capacitor [46, 48].

amplifier, respectively. They reduce total sampling noise
as follows.
Note that 7 is the amplifier noise factor [46, 47].

- R
jlz( vk, 1 1 jxk—T (13)

\%
RL + RFB ngL ngFB CS
- 8wV | KT
Vi =| 78R +—+—JX— (14)
( ‘ ml gmlRL CS

If the amplifier gain, &, is large, the noises can be

approximate as

— R kT
v:] zLx— (15)
R, +R, C;

Vi, ®78,.R, AL (16)
CS

It shows that the sampling noise can be adjusted by
R, ,R., and g,, while C; remains constant.

References [22, 30, 46, 48] introduce the active
sampling kT/C noise canceling scheme as shown in Fig.
21. This scheme captures the noise on an additional
series capacitor (C, ) which is placed between the
preamplifier and the latch of the comparator. Then this
noise would be canceled in the next phase. Although the
additional series capacitor induces extra noise, this is
attenuated by preamplifier gain. However, this noise
cancellation cannot be employed directly in NS-SAR.
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This is because the noise cancellation occurs inside the
comparator, which causes the noise captured by C, to

be shaped by NTF. To overcome this limitation,
references [22, 30] perform the noise cancellation in the
pre-comparator feedback path as shown in Fig. 22.
Although EF structure has been adopted to validate the
pre-comparator kT/C noise cancellation, they can also be
applied to CIFF structures. These techniques alleviate the
burden of the ADC input driver by reducing the sampling

capacitor.

V. ADVANCED ARCHITECTURES
(FUTURE TRENDS)

Even though the NS-SAR ADCs are a high-efficient
and low-cost architecture, they still have inherent
limitations, such as the challenge of driving large
sampling capacitors for high-resolution NS-SAR and
limited BW due to the oversampling. This section
summarizes the advanced architectures employed in an

effort to address these limitations.

1. Hybrid Architectures

In [49], the NS-SAR ADC is employed as a quantizer
in continuous time (CT)-DSM ADC so as to achieve a
power-efficient 3rd-order NS effect. It is implemented by
means of a Ist-order CT-DSM ADC and a fully passive
2nd-order NS-SAR. Thanks to the 2nd-order NS-SAR,
the overall loop filter can be simplified given that it
needs only a single active amplifier to realize the 3rd-
order NS effect.

In [50, 51], the pipelined NS-SAR ADC is proposed to
solve BW limitation. The 2nd-stage residue is summed
with 1st-stage residue, which amplified by inter-stage
residue amplifier. Then further quantized in 2nd-stage,
realizing EF NS. Since the 2nd-stage integrates the
residue during the 1st-stage sampling and conversion a
high-speed pipeline operation is maintained.

In [32, 39], the multi-stage noise-shaping (MASH)
ADC is presented. Reference [32] implements NS-SAR
assisted pipelined ADC, realizing 2-0 MASH. The 2nd-
orer NS-SAR ADC shapes the inter-stage gain error and
nonlinearities of pipelined ADC. It relaxes the gain
sensitivity of conventional pipelined ADC. Reference
[39] proposes 1-1 MASH structure using fully passive

Comparator

Fig. 22. Pre-comparator kT/C noise cancellation [22, 30].

ADC #l| Samp. | Conv. | Conv. | Conv.
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@)
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Residue (Z")
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Residue (z7%) 1}
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(b)

Fig. 23. (a) Inter-channel non-casual feedback; (b) midway
feedback proposed in [16].

NS-SAR and VCO ADC alleviating the burden of
driving large sampling capacitors. The proposed MASH
ADC allows for the use of the low-resolution NS-SAR as
a lst-stage, allowing for small input capacitors while
signal attenuation of passive NS-SAR is addressed by
leveraging it to linearize the VCO.

2. Time-interleaved Architectures

The oversampling ADCs suffer from the limited BW
due to the OSR. Time-interleaved (TI) architecture is a
well-known technique for increasing BW. However, this
TI strategy is not a straightforward solution for NS-SAR
ADCs due to the residue process. Because the multiple
channels (sub-ADCs) operate in parallel with
overlapping the conversion cycles, the residue from the
previous channel cannot be fed back to the adjacent
channel directly as shown in Fig. 23(a). To apply the TI
technique to NS-SAR ADC, [16] proposes the midway
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Table 2. Comparison and summary

L BW Power NS SNDR | SFDR | FoMsg FoMy Loop
Year | Publication (MHz) | (1#W) OSR order | (dB) @B) | (dB) | (@c.step) Structure Filter Features
2012 | [1]JSSC 11 806 4 1 62.1 725 | 1635 35 CIFF | Active |First CIFF NS-SAR ADC
2015 | [2] VLSIC 6.25 120.7 4 1 58 - 165.2 14.8 EF Passive |First EF NS-SAR ADC
[3] ASSCC 8 2529 4 2 64.9 - 169.9 11 EF Passive |Passive gain with cap. stacking
[4]ESSCIRC| 0.125 | 61 | 8 1 74 | 95 |167.1| 596 | CIFF | Passive [Multi-input comp. for relativg
2016 gain
[5] VLSIC | 0.002 37.1 25 3 98 111.8 | 1753 143 CIFF | Active |DEM, modulation dither effect
[6]JSSC 0.001 15.7 | 500 1 101 105.1 | 179 85.6 CIFF | Active |DWA, MES
[(7cicc | 175 | 705 | 8 1| 681 | 848 | 172 9.7 CIFF | Active |63t squares estimation-based
calibration
[8] VLSIC | 0.262 143 16 2 80 - 172.6 334 CIFF | Passive |Tri-level majority voting
2017 | [9] VLSIC 25 2400 6 1 69.1 81.2 | 169.2 20.7 CIFF | Passive |Noise quantizer technique
[10]ISSCC 5 460 | 13.2 1 79.7 92.6 | 180.1 5.8 CIFF | Active |Gain-enhanced dynamic amp.
[1jcicc | 025 | 2578 | 20 | 3 834 | 965 | 1733 | 426 CIFF | Active ggﬁ'l""p integrator,  binary
12] ASSCC 0.05 60 16 2 72 78.7 | 161.2 184.4 CIFF | Passive |Majority voting, cycle DEM
yority g, Cy
2018 [ [1311SSCC | 0.625 84 8 2 79 89 177.7 9.2 EF Active |NTF optimization
[14] |
MWSCAS 0.002 74.2 32 1 78.8 87.6 | 153.1 | 2605.9 EF Active [2-C DAC
[15]ASSCC| 5 1087 | 4 2 682 | 84.6 | 174.8 52 CIFF | Active |OPtimal - 2-zeros & 2-poles,
compiled layout
2019 [16]JSSC 50 13000 | 4 4 70.4 88 166.3 48 TI-EF | Active |Time-interleaved
[17] CICC 2 2130 20 2 73.8 873 | 163.5 133 CIFF | Passive |Buffer-embedded
[18] ISSCC 40 1250 4 1 66.6 774 | 171.6 9 CIFF | Passive |Passive signal-residue summation|
[19] ASSCC | 0.625 130 8 2 71 81 167.8 359 EF Active |Dynamic amp., ring amp.
[20]TCAS-1| 0625 | 70 | 8 | 2 | 746 | - |1741| 128 EF | Active |Configurable band-pass, - clock-
controlled amp.
[21]JSSC 0.1 120 10 4 87.6 | 102.8 | 176.8 30.6 Cas.-EF | Active |Multi-phase settling amp.
. |Passive gain with cap. stacking,|
2020 [23]1SSCC | 0.04 674 25 1 90.5 | 102.2 | 1782 30.8 CIFF | Passive 2™_order MES
[24] . 2-C DAC, correlated double]
MWSCAS 0.002 40.8 32 1 82.6 90.9 | 159.5 925.1 EF Active sampling
[25]1JSSC 0.625 107 8 2 83.8 943 | 1815 6.8 CIFF | Active |Closed-loop dynamic amp.
[26] TCAS-IT| 3.125 1240 16 2 77 90.1 171 343 CIFF Active |Lossless integrator
[27] ASSCC | 0.625 71 8 2 73.8 88.1 | 1732 14.2 EF Active |Open-loop V-T-V converter
[28] ISSCC 80 2560 4 1 66.3 73.6 | 1712 9.5 TI-CIFF | Passive |Coarse-fine segmentation
[29]1ISSCC 0.25 340 10 4 933 | 1044 | 182 18 CIFF | Active |Cap. stacking, dynamic buffering
2021 | ;3oussC | 0.625 | 119 | 8 | 3 | 848 | 103 | 182 | 67 |EF-CIFF| Active [<1/C cancellation, floating inv.
dynamic amp.
[3171JSSC 50 8500 4 2 69.1 - 166.8 36.5 TI-CIFF | Passive |Fully dynamic
[32]18scc | 25 1260 | 8 2 75 | 921 | 178 55 CIFF | Passive | =0 MASH, NS-SAR assisted
pipeline
. EF-cascaded  resonator  FF,
[33]1SSCC 0.5 13388 5 4 84.1 97 179.8 10.2  |EF-CRFF| Active buffer-embedded
[34] TCAS-II| 0.625 | 113.02 | 16 2 79.3 90.4 | 176.7 12 EF Active |Unity-gain buffer
[35]JSSC 0.125 96 8 3 79.6 94.8 | 170.7 494 EF-CIFF | Active |Dither-based digital calibration
2022 R i _
BO1ISSC | L1 | 160 | 11 | 1| 715 | 81 [ 1699 | 237 | CIFF | Passive |y A g NSSAR
[40]JSSC 5 8006 6 2 84.2 973 | 1722 60.4 CIFF | Active |Buffer-embedded
. |Duty-cycled  amp. digital-
[41]JSSC |0.03125| 7.3 16 2 80 98 176.3 14.3 CIFF | Active predicted MES

feedback which is multiple feedback to other channels as
shown in Fig. 23(b). Thanks to the inherent delay in
midway feedback, this allows high-order NTF to be
realized. However, as the TI NS-SAR ADC in [16] is

implemented on EF architecture, it requires a summing

amplifier consuming large static power. Moreover, it

shows mild NTF to ensure stability due to the gain of the

amplifier being vulnerable to PVT variations. To
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overcome these drawbacks of the EF structure, [28, 31]
realizes the TI NS-SAR ADC using CIFF architecture.
[31] uses the multi-input comparator as a feedforward
summation and [28] adopts the passive summation using
capacitor stacking scheme. Therefore, the CIFF-based TI
NS-SAR ADCs show better power efficiency than EF-
based structure due to unnecessariness of a static
amplifier.

V1. CONCLUSION

In this paper, the fundamentals of NS-SAR ADCs are
described. Additionally, the noise reduction techniques
including the implementation of a loop filter, CDAC
MES, and kT/C noise cancellation are also reviewed. The
loop filters to realize NS effects are categorized as either
active or passive topology with the advancements of each
topology provided. Additional noise reduction techniques
such as CDAC MES and kT/C cancellation to suppress
the unshaped noise by NTF are presented. Advanced
hybrid architectures capable of overcoming the inherent
limitations of NS-SARs are also summarized.

Table 2 compares and summarizes the performance,
feedback structure, loop filter implementation, and
features of NS-SAR ADCs with chip measurement
results.

ACKNOWLEDGMENTS

This work was supported in part by Chung-Ang
University Research Grants in 2020, and in part by
Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2020-0-01294, Development of
IoT based edge computing ultra-low power artificial
intelligent processor).

REFERENCES

[1] J. A. Fredenburg and M. P. Flynn, "A 90-MS/s 11-
MHz-Bandwidth 62-dB  SNDR Noise-Shaping
SAR ADC," IEEE Journal of Solid-State Circuits,
vol. 47, no. 12, pp. 2898-2904, 2012.

[2] Z. Chen, M. Miyahara, and A. Matsuzawa, "A
9.35-ENOB, 14.8 fl/conv.-step Fully-Passive
Noise-Shaping SAR ADC," in 2015 Symposium on

(7]

[9]

[11]

VLSI Circuits (VLSI Circuits), 2015, pp. C64-C65.
Z. Chen, M. Miyahara, and A. Matsuzawa, "A 2nd
Order Fully-Passive Noise-Shaping SAR ADC
with Embedded Passive Gain," in 2016 IEEE Asian
Solid-State Circuits Conference (A-SSCC), 2016,
pp- 309-312.

W. Guo and N. Sun, "A 12b-ENOB 61pW Noise-
Shaping SAR ADC with a Passive Integrator," in
ESSCIRC Conference 2016: 42nd European Solid-
State Circuits Conference, 2016, pp. 405-408.

K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto,
and K. Sushihara, "A 97.99 dB SNDR, 2 kHz BW,
37.1 uW Noise-Shaping SAR ADC with Dynamic
Element Matching and Modulation Dither Effect,"
in 2016 IEEE Symposium on VLSI Circuits (VLSI-
Circuits), 2016, pp. 1-2.

Y. S. Shu, L. T. Kuo, and T. Y. Lo, "An
Oversampling SAR ADC With DAC Mismatch
Error Shaping Achieving 105 dB SFDR and 101
dB SNDR Over 1 kHz BW in 55 nm CMOS,"
IEEE Journal of Solid-State Circuits, vol. 51, no.
12, pp. 2928-2940, 2016.

H. Garvik, C. Wulff, and T. Ytterdal, "An 11.0 bit
ENOB, 9.8 fJ/conv.-step Noise-Shaping SAR ADC
Calibrated by Least Squares Estimation," in 2017
IEEE Custom Integrated Circuits Conference
(CICC), 2017, pp. 1-4.

W. Guo, H. Zhuang, and N. Sun, "A 13b-ENOB
173dB-FoM 2nd-Order NS SAR ADC with Passive
Integrators," in 2017 Symposium on VLSI Circuits,
2017, pp. C236-C237.

Y. Z. Lin, C. H. Tsai, S. C. Tsou, R. X. Chu, and C.
H. Lu, "A 2.4-mW 25-MHz BW 300-MS/s Passive
Noise Shaping SAR ADC with Noise Quantizer
Technique in 14-nm CMOS," in 2017 Symposium
on VLSI Circuits, 2017, pp. C234-C235.

C. C. Liu and M. C. Huang, "A 0.46mW 5MHz-
BW 79.7dB-SNDR Noise-Shaping SAR ADC with
Dynamic-Amplifier-based FIR-IIR Filter," in 2017
IEEE International Solid-State Circuits Conference
(ISSCC), 2017, pp. 466-467.

M. Miyahara and A. Matsuzawa, "An 84 dB
Dynamic Range 62.5-625 kHz Bandwidth Clock-
Scalable Noise-Shaping SAR ADC with Open-
Loop Integrator using Dynamic Amplifier," in 2017
IEEE  Custom Integrated Circuits Conference
(CICC), 2017, pp. 1-4.



448

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

KIHO SEONG et al : A REVIEW OF NOISE REDUCTION TECHNIQUES IN NOISE-SHAPING SAR ADCs

Y. Hwang, Y. Song, J. Park, and D. Jeong, "A 0.6-
to-1V  10k-to-100kHz BW 11.7b-ENOB Noise-
Shaping SAR ADC for IoT Sensor Applications in
28-nm CMOS," in 2018 IEEE Asian Solid-State
Circuits Conference (A-SSCC), 2018, pp. 247-248.
S. Li, B. Qiao, M. Gandara, and N. Sun, "A 13-
ENOB 2nd-Order Noise-Shaping SAR ADC
Realizing Optimized NTF zeros using an Error-
Feedback Structure," in 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), 2018,
pp. 234-236.

L. Shi, Y. Zhang, Y. Wang, M. Kareppagoudr, M.
Sadollahi, and G. C. Temes, "A 13b-ENOB Noise
Shaping SAR ADC with a Two-Capacitor DAC,"
in 2018 I[EEE 6lst
Symposium on Circuits and Systems (MWSCAS),
2018, pp. 153-156.

H. Garvik, C. Wulff, and T. Ytterdal, "A 68 dB
SNDR Compiled Noise-Shaping SAR ADC With
On-Chip CDAC Calibration," in 2019 IEEE Asian
Solid-State Circuits Conference (4-SSCC), 2019,
pp. 193-194.

L. Jie, B. Zheng, and M. P. Flynn, "A Calibration-
Free Time-Interleaved Fourth-Order Noise-Shaping
SAR ADC," IEEE Journal of Solid-State Circuits,
vol. 54, no. 12, pp. 3386-3395, 2019.

T. Kim and Y. Chae, "A 2MHz BW Buffer-
Embedded Noise-Shaping SAR ADC Achieving
73.8dB SNDR and 87.3dB SFDR," in 2019 IEEE
Custom Integrated Circuits Conference (CICC),
2019, pp. 1-4.

Y.Z. Lin, C. Y. Lin, S. C. Tsou, C. H. Tsai, and C.
H. Lu, "20.2 A 40MHz-BW 320MS/s Passive
Noise-Shaping SAR ADC With Passive Signal-
Residue Summation in 14nm FinFET.," in 2019
IEEE  International  Solid-  State
Conference - (ISSCC), 2019, pp. 330-332.
J. S. Yoon, J. Hong, and J. Kim, "A Digitally-
Calibrated 70.98dB-SNDR  625kHz-Bandwidth
Temperature-Tolerant 2nd-order Noise-Shaping
SAR ADC in 65nm CMOS," in 2019 IEEE Asian
Solid-State Circuits Conference (4-SSCC), 2019,
pp- 195-196.

Z. Jiao et al., "A Configurable Noise-Shaping
Band-Pass SAR ADC With Two-Stage Clock-
Controlled Amplifier,"

International Midwest

Circuits

IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 67, no.

(21]

(23]

[25]

11, pp. 3728-3739, 2020.

L. Jie, B. Zheng, H. W. Chen, and M. P. Flynn, "A
Cascaded Noise-Shaping SAR Architecture for
Robust Order Extension," /EEE Journal of Solid-
State Circuits, vol. 55, no. 12, pp. 3236-3247, 2020.
S. Li, "A kT/C-Noise-Cancelled Noise-Shaping
SAR ADC with a Duty-Cycled Amplifier," in 2020
IEEE 63rd International Midwest Symposium on
Circuits and Systems (MWSCAS), 2020, pp. 758-
761.

J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang, and N.
Sun, "A 40kHz-BW 90dB-SNDR Noise-Shaping
SAR with 4x
Mismatch  Error

Passive Gain and 2nd-Order
2020 IEEE
International Solid- State Circuits Conference -
(ISSCC), 2020, pp. 158-160.

L. Shi, E. Thaigarajan, R. Singh, E. Hancioglu, U.
K. Moon, and G. Temes, "Noise-Shaping SAR
ADC Using a Two-Capacitor Digitally Calibrated
DAC with 85.1 dB DR and 91 dB SFDR," in 2020
IEEE 63rd International Midwest Symposium on
Circuits and Systems (MWSCAS), 2020, pp. 353-
356.

X. Tang et al, "A 13.5-ENOB, 107-uW Noise-
Shaping SAR ADC With PVT-Robust Closed-
Loop Dynamic Amplifier," IEEE Journal of Solid-
State Circuits, vol. 55, no. 12, pp. 3248-3259, 2020.
Y. Zhang, S. Liu, B. Tian, Y. Zhu, C. H. Chan, and
Z. Zhu, "A 2nd-Order Noise-Shaping SAR ADC
With  Lossless Assisted
Integrator," [EEE Transactions on Circuits and

Shaping,” in

Dynamic Amplifier
Systems II: Express Briefs, vol. 67, no. 10, pp.
1819-1823, 2020.

C. C. Chen and C. C. Hsieh, "A 12-ENOB Second-
Order Noise Shaping SAR ADC with PVT-
insensitive Voltage-Time-Voltage Converter," in
2021 IEEE Asian Solid-State Circuits Conference
(4-SSCC), 2021, pp. 1-3.

C.Y.Lin, Y. Z. Lin, C. H. Tsai, and C. H. Lu, "An
80MHz-BW 640MS/s Time-Interleaved Passive
Noise-Shaping SAR ADC in 22nm FDSOI
Process," in 2021 IEEE International Solid- State
Circuits Conference (ISSCC), 2021, vol. 64, pp.
378-380.

J. Liu, D. Li, Y. Zhong, X. Tang, and N. Sun, "A
250kHz-BW  93dB-SNDR  4th-Order
Shaping SAR Using Capacitor Stacking and

Noise-



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Dynamic Buffering," in 2021 IEEE International
Solid- State Circuits Conference (ISSCC), 2021,
vol. 64, pp. 369-371.

T. H. Wang, R. Wu, V. Gupta, X. Tang, and S. Li,
"A 13.8-ENOB Fully Dynamic Third-Order Noise-
Shaping SAR ADC in a Single-Amplifier EF-CIFF
Structure With Hardware-Reusing kT/C Noise
Cancellation," IEEE Journal of Solid-State Circuits,
vol. 56, no. 12, pp. 3668-3680, 2021.

H. Zhuang, J. Liu, H. Tang, X. Peng, and N. Sun,
"A Fully Dynamic Low-Power Wideband Time-
Interleaved Noise-Shaping SAR ADC," I[EEE
Journal of Solid-State Circuits, vol. 56, no. 9, pp.
2680-2690, 2021.

H. Zhang, Y. Zhu, C. H. Chan, and R. P. Martins,
"A 25MHz-BW 75dB-SNDR Inherent Gain Error
Tolerance Noise-Shaping SAR-Assisted Pipeline
ADC with Background Offset Calibration," in 2021
IEEE  International  Solid-  State  Circuits
Conference (ISSCC), 2021, vol. 64, pp. 380-382.

T. Wang, T. Xie, Z. Liu, and S. Li, "An 84dB-
SNDR Low-OSR 4th-Order Noise-Shaping SAR
with an FIA-Assisted EF-CRFF Structure and
Noise-Mitigated Push-Pull Buffer-in-Loop
Technique," in 2022 I[EEE International Solid-
State Circuits Conference (ISSCC), 2022, vol. 65,
pp. 418-420.

P. Y1, Y. Liang, S. Liu, N. Xu, L. Fang, and Y. Hao,
"A 625kHz-BW, 79.3dB-SNDR Second-Order
Noise-Shaping SAR ADC Using High-Efficiency
Error-Feedback Structure," IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, no.
3, pp- 859-863, 2022.

Q. Zhang et al, "A 13-Bit ENOB Third-Order
Noise-Shaping SAR ADC Employing Hybrid Error
Control Structure and LMS-Based Foreground
Digital Calibration," [EEE Journal of Solid-State
Circuits, pp. 1-1, 2022.

L. Jie et al., "An Overview of Noise-Shaping SAR
ADC: From Fundamentals to the Frontier," /[EEE
Open Journal of the Solid-State Circuits Society,
vol. 1, pp. 149-161, 2021.

G. M. Salgado, D. O’Hare, and I. O’Connell,
"Recent Advances and Trends in Noise Shaping
SAR ADCs," IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 68, no. 2, pp. 545-
549,2021.

[38]

[39]

[41]

[44]

[46]

[47]

(48]

449

L. Shen, Z. Gao, X. Yang, W. Shi, and N. Sun, "A
79dB-SNDR  167dB-FoM Bandpass AX ADC
Combining N-Path Filter with Noise-Shaping
SAR," in 2021 IEEE International Solid- State
Circuits Conference (ISSCC), 2021, vol. 64, pp.
382-384.

S. T. Chandrasekaran, S. P. Bhanushali, S. Pietri,
and A. Sanyal, "OTA-Free 1-1 MASH ADC Using
Fully Passive Noise-Shaping SAR & VCO ADC,"
IEEE Journal of Solid-State Circuits, vol. 57, no. 4,
pp. 1100-1111, 2022.

Y. Guo, J. Jin, X. Liu, and J. Zhou, "A 60-MS/s 5-
MHz BW Noise-Shaping SAR ADC With
Integrated Input Buffer Achieving 84.2-dB SNDR
and 97.3-dB SFDR Using Dynamic Level-Shifting
and ISI-Error Correction," IEEE Journal of Solid-
State Circuits, pp. 1-12,2022.

H. Li, Y. Shen, H. Xin, E. Cantatore, and P. Harpe,
"A 7.3-uW 13-ENOB 98-dB SFDR Noise-Shaping
SAR ADC With Duty-Cycled Amplifier and
Mismatch Error Shaping," IEEE Journal of Solid-
State Circuits, vol. 57, no. 7, pp. 2078-2089, 2022.
B. Murmann, "ADC Performance Survey 1997-2022,"
https://web.stanford.edu/~murmann/adcsurvey.html,
2022.

I. Ahmed, J. Mulder, and D. A. Johns, "A Low-
Power Capacitive Charge Pump Based Pipelined
ADC," IEEE Journal of Solid-State Circuits, vol.
45, no. 5, pp. 1016-1027, 2010.

R. J. V. D. Plassche, "Dynamic element matching
for high-accuracy monolithic D/A converters,"
IEEE Journal of Solid-State Circuits, vol. 11, no. 6,
pp. 795-800, 1976.

R. T. Baird and T. S. Fiez, "Linearity Enhancement
of Multibit Delta Sigma A/D and D/A Converters
Data  Weighted IEEE
Transactions on Circuits and Systems II: Analog

using Averaging,"
and Digital Signal Processing, vol. 42, no. 12, pp.
753-762, 1995.

R. Kapusta, H. Zhu, and C. Lyden, "Sampling
Circuits That Break the kT/C Thermal Noise
Limit," IEEE Journal of Solid-State Circuits, vol.
49, no. 8, pp. 1694-1701, 2014.

Z. Li et al., "A SAR ADC with Reduced kT/C
Noise by Decoupling Noise PSD and BW," in 2020
IEEE Symposium on VLSI Circuits, 2020, pp. 1-2.
J. Liu, X. Tang, W. Zhao, L. Shen, and N. Sun, "A



450 KIHO SEONG et al : A REVIEW OF NOISE REDUCTION TECHNIQUES IN NOISE-SHAPING SAR ADCs

13-bit 0.005-mm?2 40-MS/s SAR ADC With kT/C
Noise Cancellation," IEEE Journal of Solid-State
Circuits, vol. 55, no. 12, pp. 3260-3270, 2020.

[49] J. Liu, S. Li, W. Guo, G. Wen, and N. Sun, "A
0.029mm2 17-FJ/Conv.-Step CT Delta-Sigma
ADC with 2nd-Order Noise-Shaping SAR
Quantizer," in 2018 IEEE Symposium on VLSI
Circuits, 2018, pp. 201-202.

[50] Y. Song, Y. Zhu, C. Chan, L. Geng, and R. P.
Martins, "A 77dB SNDR 12.5MHz Bandwidth 0-1
MASH X A ADC Based on the Pipelined-SAR
Structure," in 2018 IEEE Symposium on VLSI
Circuits, 2018, pp. 203-204.

[511 Y. Song, Y. Zhu, C. H. Chan, and R. P. Martins, "A
2.56mW 40MHz-Bandwidth 75dB-SNDR Partial-
Interleaving SAR-Assisted NS Pipeline ADC With
Background Inter-Stage Offset Calibration,”" in
2020 IEEE International Solid- State Circuits
Conference - (ISSCC), 2020, pp. 164-166.

Kiho Seong received the B.S. and
M.S. degrees at School of Electrical
and Electronics Engineering from
Chung-Ang University (CAU), Seoul,
2018 and 2020,
respectively. He is currently working

Korea, in

toward the Ph.D. degree in electrical
and electronics engineering. His research interests
include high-speed and high-resolution analog-to-digital
converter (ADC).

Jae-Soub Han received the B.S. and
M.S. degrees at School of Electrical
and Electronics Engineering from
Chung-Ang University (CAU), Seoul,
2019 and 2021,
respectively. He is currently working

Korea, in

toward the Ph.D. degree in electrical
and electronics engineering. His research interests
include high speed direct digital frequency synthesizer
(DDFS) and low-power phase-locked loop (PLL).

Sung-Eun Kim was born in South
Korea in October 1978. He received
the B.S. degree in electrical and
computer engineering from Hanyang
University, Seoul, South Korea, in
2002, and the M.S. degree in
electrical engineering from the Korea
Advanced Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2004. Since March 2004, he
has been with the Electronics and Telecommunications

Research Institute (ETRI), Daejeon, where he is currently
a Principal Researcher. He has been primarily involved in
researching analog circuit design for human body
communications and power management of energy
harvesting systems.

Yong Shim received the B.S. and
M.S. degrees in electronics engi-
neering from Korea University, in
2004 and 20006, respectively, and the
Ph.D. degree from the School of
Electrical and Computer Engineering,

< b

IN, in 2018. He was a Memory Interface Designer with

Purdue University, West Lafayette,

Samsung Electronics, Hwaseong, from 2006 to 2013. At
Samsung, he has worked on the design and development
of a memory interface for synchronous DRAMs (DDR1
and DDR4). He is currently an Assistant Professor with
Chung-Ang University. Prior to joining Chung-Ang
University, in 2020, he was an SRAM Designer with
Intel Corporation, Hillsboro, OR, from 2018 to 2020,
where he was involved in designing circuits for super-
scaled next-generation SRAM cache design. His research
interests include neuromorphic hardware and algorithm,
in-memory computing, robust memory interface design,
as well as emerging devices (RRAM, MRAM, and STO)
based unconventional computing models.



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022

and M.S. degrees from Korea
University, Seoul, Korea, in 1990
and 1998, respectively. He received
the Ph.D. degree in electrical
engineering from the University of

llinois at  Urbana-Champaign
(UIUC), IL, USA, in 2002. From 2000 to 2006, he was
with the Department of High-Speed Mixed-Signal ICs as
a senior scientist at Rockwell Scientific Company,
formerly Rockwell Science Center (RSC), Thousand
Oaks, CA, USA. At RSC, he was involved in
development of high-speed data converters (ADC/DAC)
and direct digital frequency synthesizers (DDFS). He
was also with Samsung Electronics from 1990 to 1996.
Since 2006 he has been with the School of Electrical and
Electronics Engineering, Chung-Ang University (CAU),
Seoul, Korea, where he is a faculty member. His research
interests include high-performance analog and digital
circuits such as low-power ADCs, high-speed DACs,
hybrid frequency synthesizers (PLLs, DDFSs), high-
speed interface circuits (CDRs, SerDes), PMIC, and near
threshold-voltage (NTV) circuits.

Kwang-Hyun Baek received the B.S.

451




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


