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Abstract—Noise-shaping successive-approximation-
register (NS-SAR) ADCs have become one of the most 
promising candidates for high-resolution data 
converters over the past decade. This is due to the fact 
that they combine the advantages of delta-sigma 
modulation and SAR ADCs. In this hybrid 
architecture, the quantizer and residue feedback DAC 
can be replaced by SAR, a replacement which 
achieves high SNR while also benefiting from 
superior power efficiency and low cost. For NS-SAR 
ADCs, various implementations of loop filters for 
residue processing exist that can realize the noise 
transfer function (NTF) for NS effects. In addition, 
many noise reduction techniques have been proposed 
that suppress additional noises not shaped by NTF. 
This paper describes the basics of NS-SAR ADCs 
while also reviewing noise reduction techniques, 
which include the implementation of a loop filter for 
residue handling, kT/C noise rejection, and capacitive 
DAC mismatch error shaping. It also outlines 
advanced architectures that can overcome the 
limitations of NS-SAR ADCs.    
 
Index Terms—Analog-to-digital converter, successive 
approximation register, oversampling, noise shaping, 
mismatch error shaping  

I. INTRODUCTION 

Modern IoT devices demand high resolution, power 
efficient ADCs for sensor interfaces such as human body 
communication, edge computing, and biomedical sensors. 
Successive approximation register (SAR) ADCs are 
architectures that are well known for their technology 
scalability. They are also recognized for their power and 
area efficiency due to their digitally based building 
blocks. However, realizing high resolution while 
maintaining the advantages of SAR ADCs is problematic 
due to thermal noise such as kT/C and comparator noise. 
This is because in order to mitigate such noise, the 
resolution of the CDAC must be increased. Additionally, 
a low-noise comparator that consumes a lot of power is 
also required. In the case of CDAC, total capacitance 
increases exponentially with resolution, which occupies a 
large area while increasing the power consumption of the 
driving buffer as well. Given these factors, the benefits of 
SAR ADCs tend to diminish with increasing resolution. 

On the other hand, delta-sigma modulation (DSM) 
architectures are traditionally regarded as the most 
promising candidates for high-resolution ADCs due to 
their oversampling and noise shaping (NS) 
characteristics. While these noise reduction effects do 
indeed improve SNR performance by suppressing overall 
noises, the disadvantage is that DSM architectures 
require power-hungry op amps, which occupy large areas 
and cannot easily scale with technology. Furthermore, 
flash ADC used as a multi-bit quantizer in DSM 
architectures typically offers lower resolutions, which in 
turn require a higher oversampling ratio (OSR) to 
achieve high SNR. It leads to a decrease in power 
efficiency. 
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Therefore, NS-SAR ADC, a hybrid architecture that 
combines DSM and SAR ADC to achieve high SNR 
while maintaining both advantages, has become a 
promising candidate for high-resolution ADCs in recent 
years [1-41]. In this hybrid architecture, the SAR ADC is 
used as a multi-bit quantizer and concurrently as a 
feedback DAC which processes the residue to achieve 
noise shaping performance. 

Fig. 1 compares the NS-SAR ADCs with conventional 
SAR and DSM ADCs, which have been published in 
major conferences [42]. The solid line and dashed line 
indicate 180 dB of Schreier Figure-of-Merit (FoMS as 
shown in Eq. (1)) and 5 fJ/c.-s of Walden FoM (FoMW as 
shown in Eq. (2)), respectively. It shows that NS-SAR 
ADCs are pioneers in terms of power efficiency, as 
compared with conventional architectures. Reference [36, 
37] have reviewed the NS-SAR ADC to show the 
development of this architecture. 
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In this paper, the fundamentals of the NS and the 

advances in noise reduction techniques for NS-SAR 
ADCs are reviewed. In particular, the loop filter 
implementations have been described in depth. The rest 
of this paper is organized as follows. Section II provides 
the basic concept of NS-SAR ADCs including 
oversampling and NS mechanisms. Section III outlines 
the noise reduction techniques employed to realize NS 

characteristics with residue processing loop filters while 
Section IV introduces kT/C noise cancellation and 
CDAC mismatch error shaping (MES). Finally, Section 
V presents the advanced architectures employed to 
overcome the limitations of NS-SAR ADCs and Section 
VI concludes this paper. 

II. BASIC OF NOISE-SHAPING (NS)  
SAR ADCS 

1. Oversampling 
 
Oversampling is a common method of improving the 

SNR by reducing quantization noise. The oversampling 
ADC samples and quantizes the input signal at a much 
higher sampling rate than the signal band. Therefore, a 
small fraction of quantization noise falls into the signal 
band making it possible to filter the out-band noise as 
shown in Fig. 2. The reduction of quantization noise by 
oversampling can be quantified as Eq. (3). For better 
understanding, the signal-to-quantization noise ratio 
(SQNR) is considered rather than SNR.  
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where signalP  and ,q noiseP  denote signal and quantization 

noise power, respectively. The OSR is the ratio between 
the signal band ( Bf ) and Nyquist range ( / 2Sf ). 
According to the above equation, there is only a 3-dB 
improvement in SQNR when OSR is doubled. Therefore, 
a very high OSR is required for high-resolution ADC 
designs, which has the effect of degrading power  

Fig. 1. Power efficiency comparison between NS-SAR ADCs 
with conventional architectures [42]. 
 

Fig. 2. Quantization noise and noise transfer function (NTF). 
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efficiency. To overcome this limitation, NS schemes are 
widely used along with oversampling. 

 
2. Noise Shaping (NS) 

 
Noise shaping is an essential technique and a basic 

concept of oversampling ADCs to enhance noise 
reduction effects. This is achieved by attenuating in-band 
noise through a high-pass noise transfer function (NTF) 
as shown in Fig. 2. The 1st-order DSM can be an 
example for presenting the NS mechanism. 

The 1st-order DSM consists of a quantizer, a feedback 
DAC, and an integrator as described in Fig. 3. The 
quantizer digitizes analog input with feedback DAC 
converting this digitized data to an analog signal and 
subtracting from input, making residue voltage that 
contains quantization noise. Eq. (4) shows a transfer 

function including quantization noise, ( )Q z . 

  

 ( ) ( )
( ) ( ) ( ) ( )1

1 1OUT IN

H z
D z V z Q z

H z H z
= +

+ +
 (4) 

 

If the ( )H z  is a simple discrete-time integrator, 

( ) ( )1 1/ 1 ,H z z z− −= −  then ( )OUTD z  can be expressed 

as follows. 
 

 ( ) ( ) ( ) ( )1 11OUT IND z z V z z Q z− −= + −  (5) 

Eq. (5) shows a simple delay signal transfer function 
(STF), 1z− , and a high-pass NTF, 11 .z−−  Therefore, 
the SQNR including in-band noise attenuation by NTF 
can be expressed as Eq. (6). 
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Note that IBNG denotes in-band noise gain, which is 

( )( )2

0

 /
Bf

BIBNG NTF f f df= ∫ . If NTF is assumed to be 

11 z−− , Eq. (6) can be approximated as follows. 
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Eq. (7) shows that the SQNR increases 9-dB when 

OSR is doubled. Fig. 4 compares the SQNR 
improvement between oversampling with and without 
NS. 

 
3. Noise-shaping (NS) SAR ADCs 

 
NS-SAR ADCs have been proposed as a means to 

overcome the shortcomings of DSM ADCs while 
obtaining similar NS characteristics [1]. The proposed 
architecture replaces a quantizer and a feedback DAC of 
CIFF-DSM as a SAR ADC as shown in Fig. 5(a). And it  

Fig. 3. (a) Block diagram of the 1st-order DSM; (b) signal flow 
diagram. 

 
Fig. 4. SQNR improvement by oversampling with and without 
NS. 
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realizes the NS using a finite-impulse-response and 
infinite-impulse-response (FIR-IIR) loop filter. The 
switched-capacitor FIR filter samples the residue and IIR 
filter integrates this residue. The signal-flow diagram 
including the FIR-IIR loop filter can be modeled as in 
Fig. 5(b). Therefore, the overall transfer function is given 
by Eq. (7). 

 

 ( ) ( ) ( ) ( ) ( )1
1OUT IND z V z Q z

A z B z
= +

+  (7) 

 
Even though [1] achieves a sharp NTF as shown in Fig. 

6, the SNDR is limited due to additional noise generated 
by the FIR-IIR filter. Furthermore, a power-consuming 
amplifier is still required. To overcome these limitations, 
various noise reduction techniques have been proposed. 
In this paper, the NS-SAR ADCs are classified into 
active and passive topologies based on the loop filter 
implementations, which are reviewed in more detail in 
the following section. 

III. NOISE REDUCTION TECHNIQUES WITH 

RESIDUE PROCESSING 

The most important factor of NS-SAR ADCs is how to 
extract the residue and sum it with the following input 

signal. There are thus two concerns 1) how to process the 
residue and 2) how to implement the loop filter. With 
regard to residue processing, both cascaded-integrator-
feed-forward (CIFF) and error-feedback (EF) are 
common implementations. In general, the CIFF 
structures have a feed-forward path to process the residue 
and sum it to the following input using a multi-input 
comparator, whereas the EF structures have a feedback 
path and sum the residue to the input voltage directly on 
CDAC. Note that the multi-input comparator introduces 
extra noise in CIFF and the charge-sharing summation in 
EF induces signal attenuation.  

Fig. 7(a, b) and 8(a, b) shows signal flow diagrams and 
circuit implementations of CIFF and EF structures, 
respectively. The corresponding transfer functions are as 
follows. 

 

 ( ) ( ) ( ) ( )1

1
1OUT IN ND z V z Q z

H z z−
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+  (8) 

 ( ) ( ) ( )( ) ( )11OUT IN ND z V z E z z Q z−= + −  (9) 
 

From the circuit implementation of each structure, Eq. 
(8) and (9) can be translated to Eq. (10) and (11), 
respectively. 
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Fig. 5. (a) Block diagram of NS-SAR ADC; (b) signal flow 
diagram [1]. 

 
 

Fig. 6. NTF comparison between NS-SAR [1] and 1st-order 
DSM ADC. 
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Note that, the CIFF structure needs a high-gain 
integrator to achieve ideal high-pass NTF. On the other 
hand, the EF structure does not require a high gain 
integrator but requires a high accuracy opamp. This is 
because the gain of opamp directly controls the zero of 
NTF. 

Thus, while there are many efforts to alleviate the 
burden of high gain integrator and multi-input 
comparator in CIFF structure such as passive integration 
and capacitor stacking, gain calibrations are introduced 

to precisely control the gain of opamp in EF structures. 
Table 1. summarizes and compares the CIFF and EF 
structures. 

In terms of loop filter implementation, the loop filter 
for realizing the NTF of each structure is implemented in 
two ways, namely active and passive topologies. 
Generally, an active strategy uses op amps whereas the 
passive strategy uses simple switches and capacitors to 
process the residue. More details of these loop filters are 
provided in the following sections. 

 
1. Active Loop Filter 

 
Active loop filters show flexible and sharp NTF 

because the amplifier provides sufficient gain. However, 
the active amplifier consumes large amounts of power 
which degrades the efficiency of NS-SAR. Therefore, 
much effort has been expended in a bid to reduce the 
power consumption of active strategies. 

As discussed in the previous section, the first 
implementation of NS-SAR ADC is an active strategy 
using the FIR-IIR loop filter proposed in [1]. The 
switched-capacitor FIR filter and the active-amplifier-
based IIR filter samples and integrates the residue, 
respectively. However, the proposed architecture 
presents only moderate SNDR performance, even though 
it has sharp NTF, because the passive residue sampling 
introduces considerable kT/C noise, with the active 
amplifier also introducing more noise. Improving noise 
performance requires the addition of large capacitors for 
residue sampling, while high-gain, power-consuming 
amplifiers are required in the IIR filter if the additional 
noise is to be mitigated. 

To relieve the trade-off between kT/C noise and gain 
loss due to charge sharing in switched-capacitor FIR 
filter, an input buffer, implemented as an open-loop 
amplifier between CDAC and residue sampling capacitor, 
is required [6] as shown in Fig. 9. Although it provides a 
gain of 2 alleviating kT/C noise in the FIR filter, the  

Fig. 7. (a) Signal flow diagram; (b) circuit implementation [1]
of CIFF structures. 

 

Fig. 8. (a) Signal flow diagram; (b) circuit implementation [13]
of EF structures. 
 

Table 1. Comparison between CIFF and EF 

Structure Residue 
Summation Gain Gain 

Sensitivity Limitation

CIFF Multi-input 
comparator High Low Extra noise

EF Charge-
sharing Medium High Signal 

attenuation
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input buffer and active amplifier in the IIR filter together 
consume 37% of the total power. 

In [10, 11], the open-loop dynamic-amplifier-based 
FIR-IIR filter is proposed as a means of reducing these 
extra power consumptions. Reference [11] replaces the 
input buffer and active integrator with low power open-
loop dynamic amplifiers and [10] proposes a gain-
enhanced dynamic amplifier as the input buffer. 
Moreover, [10] greatly reduces the residue sampling 
capacitor, such that the active-amplifier-based IIR filter 
can be substituted by a simple switched-capacitor 
integrator as shown in Fig. 10. However, the drawback is 
that the open-loop dynamic amplifier is sensitive to PVT 
variation, which degrades the NTF and limits the NS 
performance. To compensate for this drawback, [13] 
proposes background calibration for dynamic amplifiers 
which increases design complexity.  

Reference [25] proposes a calibration-free PVT-robust 
closed-loop 2-stage dynamic amplifier to simplify the 
design complexity of the calibration as illustrated in Fig. 
11. Due to the fact that the gain of the closed-loop 

amplifier is set by capacitor ratios, it is robust in the 
presence of PVT variations. In [27] and [29], the PVT-
insensitive voltage-time-voltage converter and PVT-
robust source follower-based unit gain buffer for active 
residue processing are proposed , respectively. 

 
2. Passive Loop Filter 

 
A passive loop filter is a simple, PVT robust, and 

scaling-friendly strategy because it consists of switches 
and capacitors. It is more power-efficient than an active 
loop filter given that it does not need a power-consuming 
amplifier. However, the passive strategy suffers from 
charge sharing in switched-capacitor operation and 
shows mild NTF due to the insufficient gain. Therefore, 
many efforts have been expended on reducing the charge 
sharing and providing adequate gain for the passive loop 
filter. 

The first fully passive NS-SAR ADC is proposed in 
[2]. The proposed architecture utilizes the switched-
capacitor circuit for the purpose of residue sampling and 
integration. Residue summation is realized by a multi-
input comparator as shown in Fig. 12. However, 
switched-capacitor residue sampling attenuates the input 
signal by factor of 2 while the charge sharing of residue 

 

Fig. 9. FIR-IIR loop filter with input buffer [6]. 
 

 

Fig. 10. FIR-IIR loop filter with dynamic amplifier and 
switched-capacitor implementation [10]. 

 

Fig. 11. PVT-robust closed-loop 2-stage dynamic amplifier 
[25]. 

 

 

Fig. 12. Fully passive NS-SAR ADC [2]. 
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integration degrades NTF. This architecture is improved 
in [3] to 2nd-order NS. The 2nd-order NS is realized with 
the application of capacitor stacking [43] thus achieving 
passive gain but this does nothing to resolve signal 
attenuation limitations. Reference [4, 8] eliminates this 
signal attenuation and realizes sharper NTF than [2, 3]. 
In addition, the relative gain between input signal and 
integrated residue is realized through the input transistor 
sizing of the multi-input comparator as shown in Fig. 13. 
The multi-input comparator not only provides relative 
gain but also realizes signal summation. However, the 
large extra input pair which provides relative gain also 
introduces additional thermal noise, while the residue 
sampling and integration introduce extra unshaped kT/C 
noise, increasing the overall noise. 

To alleviate the extra thermal noise from the multi-
input comparator, [18] proposes a passive signal-residue 
summation scheme as shown in Fig. 14. This architecture 
achieves the residue summation by serialization of 

CDAC and integration capacitor. Moreover, the 
differential residue sampling on back-to-back capacitors 
provides a passive gain of 2 thereby eliminating the 
multi-input comparator. Even so, it achieves only 2x 
passive gain so resulting in mild NTF while the small 
residue sampling capacitor introduces large kT/C noise. 

In [23], the differential integration with split capacitor 
and capacitor stacking are presented as described in Fig. 
15. This scheme eliminates residue sampling and 
provides 4x the passive gain, which obviates the need for 
a multi-input comparator. Therefore, it reduces the kT/C 
and comparator noise significantly. However, it remains 
difficult to increase gain because the passive gain using 
capacitor stacking is sensitive to parasitic capacitance. 

IV. ADDITIONAL NOISE AND ERROR 

REDUCTION TECHNIQUES 

Although the NTF efficiently suppresses quantization 
and comparator noise, additional noise and error that are 
not shaped by NTF remain. These additional non-
idealities, such as the CDAC mismatch-induced error and 
kT/C noise, serve to limit the SNDR of the NS-SAR  

Fig. 13. Passive NS-SAR ADC with relative gain using multi-
input comparator [4]. 

 

Fig. 14. Passive signal-residue summation with 2x passive gain 
using capacitor stacking [18]. 

 

 

Fig. 15. Passive residue integration with 4x passive gain using 
capacitor split and stacking [23]. 
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ADCs. This section, therefore, presents the noise and 
error reduction techniques to mitigate these additional 
non-idealities. 

 
1. CDAC Mismatch 

 
The CDAC mismatch introduces additional unshaped 

errors which cause harmonic distortion and increase the 
in-band noise floor. It can be modeled as an additive 
noise, ε(z), in a loop filter as shown in Fig. 16. Then 

( )OUTD z  can be expressed as follows. 

 

 ( ) ( ) ( ) ( ) ( )1

1
1OUT IN ND z V z Q z z

H z z
ε

−
= + +

+
 (10) 

 ( ) ( ) ( )( ) ( ) ( )11OUT IN ND z V z E z z Q z zε−= + − +  (11) 
 
Calibration and mismatch shaping (MS) are commonly 

used methods to relieve the CDAC mismatch. The first 
one, calibration, including both the foreground and 
background method, compensates for CDAC mismatch 
in the analog and digital domain, and thus it can cancel 
errors from the CDAC mismatch. Foreground calibration 
is more widely used than the background method due to 
the greater simplicity of its implementations. However, 
foreground calibration needs additional calibration phase 
interrupting normal operation of ADCs. 

The second one, MS suppresses the in-band noise and 
distortion from CDAC mismatch. The well-known MS 

are the dynamic elements matching (DEM) [44] and 
data-weighted averaging (DWA) [45]. An element 
selection logic (ESL) randomizes and rotates the DAC 
capacitor as shown in Fig. 17. Therefore, the DEM and 
DWA suppresses and shapes the in-band harmonic 
distortion and noise, respectively. The drawbacks of 
these DEM-based MS methods are complexity and long 
delay. If higher order shaping is to be achieved, more 
complicated logic is required, with ESL complexity 
growing exponentially as CDAC resolution increases. To 
limit complexity of the ESL, some designs shuffle only a 
few MSBs, despite the continuing presence of errors 
from LSBs.  

Another MS technique is mismatch error shaping 
(MES) [6]. Conceptually, it is similar to the NS 
mechanism. It captures the mismatch error and feeds it 
back by presetting the LSBs of CDAC before sampling. 
Fig. 18 illustrates the 1st-order MES operations. During 
the sampling phase (in Fig. 18(a)), the LSB parts are 

preset to hold the previous mismatch error, ( )1
Mz E z− .  

Fig. 16. Signal flow diagram of (a) CIFF; (b) EF structures 
including noise from CDAC mismatch. 

 
 

Fig. 17. Block diagram of a simple DEM. 
 

 

Fig. 18. Block diagram of a simple MES: (a) sampling phase;
(b) conversion phase. 
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Following this, the LSB parts are reset in the conversion 
phase (in Fig. 18(b)) to subtract the previous error from 

the current error, ( ) ( )1
M ME z z E z−− . Therefore, it 

realizes a high pass shaping of the CDAC mismatch error, 

( ) ( )11 Mz E z−− . The MES is easier to implement than 

DEM because it does not require complex logic. 
However, the MES suffers input dynamic range loss due 
to LSB presetting. 

To alleviate this loss, references [6, 23, 40] apply the 
DEM or DWA for the MSBs and MES for LSBs. These 
references can also mitigate the complexity of DEM-
based implementations by applying DEM techniques to 
only some MSBs. 

 
2. kT/C Noise 

 
Sampling kT/C noise is one of the unshaped noises in 

NS-SAR ADCs. Even though oversampling relieves 
kT/C noise by OSR, the disadvantage is that increasing 
OSR limits the signal bandwidth. Fig. 19 shows sampling 
circuit and its equivalent noise modeling. The on-
resistance of the sampling switch introduces the noise 
power spectral density (PSD) of 4 ONkTR  and its 

equivalent noise bandwidth (ENBW) is 1/ 4 ON SR C . For 

a simple single-pole system, the total noise power ( 2
nv ) 

can be expressed as the product of the PSD and ENBW 
[46]. 

 

 2 14
4n ON

ON S S

kTv kTR
R C C

= × =  (12) 

   
Therefore, only the sampling capacitor appears in total 

noise power. Reference [46, 47] propose a kT/C noise 
reduction scheme using feedback topology by decoupling 
the noise PSD and ENBW. Fig. 20(a) and (b) shows a 
sampling circuit with a single-stage and two-stage  

amplifier, respectively. They reduce total sampling noise 
as follows.  

Note that γ  is the amplifier noise factor [46, 47]. 
 

 2
1

1 1L
n

L FB m L m FB S

R kTv
R R g R g R C
γ⎛ ⎞

= + + ×⎜ ⎟+⎝ ⎠
 (13) 

 2 2
2 2

1 1

m
n m L

m m L S

g kTv g R
g g R C

γγ
⎛ ⎞

= + + ×⎜ ⎟
⎝ ⎠

 (14) 

 

If the amplifier gain, , 1m mg  is large, the noises can be 

approximate as 
 

 2
1

L
n

L FB S

R kTv
R R C
γ

≈ ×
+

 (15) 

 2
2 2n m L

S

kTv g R
C

γ≈ ×  (16) 

 
It shows that the sampling noise can be adjusted by 
, ,L FBR R  and 2mg  while SC  remains constant. 
References [22, 30, 46, 48] introduce the active 

sampling kT/C noise canceling scheme as shown in Fig. 
21. This scheme captures the noise on an additional 
series capacitor ( NC ) which is placed between the 
preamplifier and the latch of the comparator. Then this 
noise would be canceled in the next phase. Although the 
additional series capacitor induces extra noise, this is 
attenuated by preamplifier gain. However, this noise 
cancellation cannot be employed directly in NS-SAR.  

 

Fig. 19. (a) Simple sampling circuit; (b) its equivalent noise 
modeling [46]. 

 
 

Fig. 20. kT/C noise reduction using feedback topology with (a) 
single-stage; (b) two-stage amplifier [46, 47]. 

 

 

Fig. 21. kT/C noise cancellation using series capacitor [46, 48].
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This is because the noise cancellation occurs inside the 
comparator, which causes the noise captured by NC  to 
be shaped by NTF. To overcome this limitation, 
references [22, 30] perform the noise cancellation in the 
pre-comparator feedback path as shown in Fig. 22. 
Although EF structure has been adopted to validate the 
pre-comparator kT/C noise cancellation, they can also be 
applied to CIFF structures. These techniques alleviate the 
burden of the ADC input driver by reducing the sampling 
capacitor. 

V. ADVANCED ARCHITECTURES  
(FUTURE TRENDS) 

Even though the NS-SAR ADCs are a high-efficient 
and low-cost architecture, they still have inherent 
limitations, such as the challenge of driving large 
sampling capacitors for high-resolution NS-SAR and 
limited BW due to the oversampling. This section 
summarizes the advanced architectures employed in an 
effort to address these limitations. 

 
1. Hybrid Architectures 

 
In [49], the NS-SAR ADC is employed as a quantizer 

in continuous time (CT)-DSM ADC so as to achieve a 
power-efficient 3rd-order NS effect. It is implemented by 
means of a 1st-order CT-DSM ADC and a fully passive 
2nd-order NS-SAR. Thanks to the 2nd-order NS-SAR, 
the overall loop filter can be simplified given that it 
needs only a single active amplifier to realize the 3rd-
order NS effect. 

In [50, 51], the pipelined NS-SAR ADC is proposed to 
solve BW limitation. The 2nd-stage residue is summed 
with 1st-stage residue, which amplified by inter-stage 
residue amplifier. Then further quantized in 2nd-stage, 
realizing EF NS. Since the 2nd-stage integrates the 
residue during the 1st-stage sampling and conversion a 
high-speed pipeline operation is maintained. 

In [32, 39], the multi-stage noise-shaping (MASH) 
ADC is presented. Reference [32] implements NS-SAR 
assisted pipelined ADC, realizing 2-0 MASH. The 2nd-
orer NS-SAR ADC shapes the inter-stage gain error and 
nonlinearities of pipelined ADC. It relaxes the gain 
sensitivity of conventional pipelined ADC. Reference 
[39] proposes 1-1 MASH structure using fully passive 

NS-SAR and VCO ADC alleviating the burden of 
driving large sampling capacitors. The proposed MASH 
ADC allows for the use of the low-resolution NS-SAR as 
a 1st-stage, allowing for small input capacitors while 
signal attenuation of passive NS-SAR is addressed by 
leveraging it to linearize the VCO. 

 
2. Time-interleaved Architectures 

 
The oversampling ADCs suffer from the limited BW 

due to the OSR. Time-interleaved (TI) architecture is a 
well-known technique for increasing BW. However, this 
TI strategy is not a straightforward solution for NS-SAR 
ADCs due to the residue process. Because the multiple 
channels (sub-ADCs) operate in parallel with 
overlapping the conversion cycles, the residue from the 
previous channel cannot be fed back to the adjacent 
channel directly as shown in Fig. 23(a). To apply the TI 
technique to NS-SAR ADC, [16] proposes the midway  

 

Fig. 22. Pre-comparator kT/C noise cancellation [22, 30]. 
 

Fig. 23. (a) Inter-channel non-casual feedback; (b) midway 
feedback proposed in [16]. 
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feedback which is multiple feedback to other channels as 
shown in Fig. 23(b). Thanks to the inherent delay in 
midway feedback, this allows high-order NTF to be 
realized. However, as the TI NS-SAR ADC in [16] is 

implemented on EF architecture, it requires a summing 
amplifier consuming large static power. Moreover, it 
shows mild NTF to ensure stability due to the gain of the 
amplifier being vulnerable to PVT variations. To  

Table 2. Comparison and summary 

Year Publication BW 
(MHz) 

Power 
( μ W) OSR NS 

order 
SNDR
(dB) 

SFDR
(dB)

FoMS
(dB)

FoMW 
(fJ/c.step) Structure Loop 

Filter Features 

2012 [1] JSSC 11 806 4 1 62.1 72.5 163.5 35 CIFF Active First CIFF NS-SAR ADC 
2015 [2] VLSIC 6.25 120.7 4 1 58 - 165.2 14.8 EF Passive First EF NS-SAR ADC 

[3] ASSCC 8 252.9 4 2 64.9 - 169.9 11 EF Passive Passive gain with cap. stacking 

[4] ESSCIRC 0.125 61 8 1 74 95 167.1 59.6 CIFF Passive Multi-input comp. for relative 
gain 

[5] VLSIC 0.002 37.1 25 3 98 111.8 175.3 143 CIFF Active DEM, modulation dither effect 
2016 

[6] JSSC 0.001 15.7 500 1 101 105.1 179 85.6 CIFF Active DWA, MES 

[7] CICC 1.75 70.5 8 1 68.1 84.8 172 9.7 CIFF Active Least squares estimation-based 
calibration 

[8] VLSIC 0.262 143 16 2 80 - 172.6 33.4 CIFF Passive Tri-level majority voting 
[9] VLSIC 25 2400 6 1 69.1 81.2 169.2 20.7 CIFF Passive Noise quantizer technique 
[10] ISSCC 5 460 13.2 1 79.7 92.6 180.1 5.8 CIFF Active Gain-enhanced dynamic amp. 

2017 

[11] CICC 0.25 257.8 20 3 83.4 96.5 173.3 42.6 CIFF Active Open-loop integrator, binary 
DEM 

[12] ASSCC 0.05 60 16 2 72 78.7 161.2 184.4 CIFF Passive Majority voting, cycle DEM 
[13] ISSCC 0.625 84 8 2 79 89 177.7 9.2 EF Active NTF optimization 2018 

[14] 
MWSCAS 0.002 74.2 32 1 78.8 87.6 153.1 2605.9 EF Active 2-C DAC 

[15] ASSCC 5 108.7 4 2 68.2 84.6 174.8 5.2 CIFF Active Optimal 2-zeros & 2-poles, 
compiled layout 

[16] JSSC 50 13000 4 4 70.4 88 166.3 48 TI-EF Active Time-interleaved 
[17] CICC 2 2130 20 2 73.8 87.3 163.5 133 CIFF Passive Buffer-embedded 
[18] ISSCC 40 1250 4 1 66.6 77.4 171.6 9 CIFF Passive Passive signal-residue summation

2019 

[19] ASSCC 0.625 130 8 2 71 81 167.8 35.9 EF Active Dynamic amp., ring amp. 

[20] TCAS-I 0.625 70 8 2 74.6 - 174.1 12.8 EF Active Configurable band-pass, clock-
controlled amp. 

[21] JSSC 0.1 120 10 4 87.6 102.8 176.8 30.6 Cas.-EF Active Multi-phase settling amp. 

[23] ISSCC 0.04 67.4 25 1 90.5 102.2 178.2 30.8 CIFF Passive Passive gain with cap. stacking, 
2nd-order MES 

[24] 
MWSCAS 0.002 40.8 32 1 82.6 90.9 159.5 925.1 EF Active 2-C DAC, correlated double 

sampling 
[25] JSSC 0.625 107 8 2 83.8 94.3 181.5 6.8 CIFF Active Closed-loop dynamic amp. 

2020 

[26] TCAS-II 3.125 1240 16 2 77 90.1 171 34.3 CIFF Active Lossless integrator 
[27] ASSCC 0.625 71 8 2 73.8 88.1 173.2 14.2 EF Active Open-loop V-T-V converter 
[28] ISSCC 80 2560 4 1 66.3 73.6 171.2 9.5 TI-CIFF Passive Coarse-fine segmentation 
[29] ISSCC 0.25 340 10 4 93.3 104.4 182 18 CIFF Active Cap. stacking, dynamic buffering

[30] JSSC 0.625 119 8 3 84.8 103 182 6.7 EF-CIFF Active kT/C cancellation, floating inv. 
dynamic amp. 

[31] JSSC 50 8500 4 2 69.1 - 166.8 36.5 TI-CIFF Passive Fully dynamic 

2021 

[32] ISSCC 25 1260 8 2 75 92.1 178 5.5 CIFF Passive 2-0 MASH, NS-SAR assisted 
pipeline 

[33] ISSCC 0.5 133.88 5 4 84.1 97 179.8 10.2 EF-CRFF Active EF-cascaded resonator FF, 
buffer-embedded 

[34] TCAS-II 0.625 113.02 16 2 79.3 90.4 176.7 12 EF Active Unity-gain buffer 
[35] JSSC 0.125 96 8 3 79.6 94.8 170.7 49.4 EF-CIFF Active Dither-based digital calibration 

[39] JSSC 1.1 160 11 1 71.5 81 169.9 23.7 CIFF Passive 1-1 MASH using NS-SAR & 
VCO 

[40] JSSC 5 8006 6 2 84.2 97.3 172.2 60.4 CIFF Active Buffer-embedded 

2022 

[41] JSSC 0.03125 7.3 16 2 80 98 176.3 14.3 CIFF Active Duty-cycled amp. digital-
predicted MES 
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overcome these drawbacks of the EF structure, [28, 31] 
realizes the TI NS-SAR ADC using CIFF architecture. 
[31] uses the multi-input comparator as a feedforward 
summation and [28] adopts the passive summation using 
capacitor stacking scheme. Therefore, the CIFF-based TI 
NS-SAR ADCs show better power efficiency than EF-
based structure due to unnecessariness of a static 
amplifier. 

VI. CONCLUSION 

In this paper, the fundamentals of NS-SAR ADCs are 
described. Additionally, the noise reduction techniques 
including the implementation of a loop filter, CDAC 
MES, and kT/C noise cancellation are also reviewed. The 
loop filters to realize NS effects are categorized as either 
active or passive topology with the advancements of each 
topology provided. Additional noise reduction techniques 
such as CDAC MES and kT/C cancellation to suppress 
the unshaped noise by NTF are presented. Advanced 
hybrid architectures capable of overcoming the inherent 
limitations of NS-SARs are also summarized. 

Table 2 compares and summarizes the performance, 
feedback structure, loop filter implementation, and 
features of NS-SAR ADCs with chip measurement 
results. 
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