
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2022.22.6.459 ISSN(Online) 2233-4866

Manuscript received Jul. 20, 2022; reviewed Oct. 31, 2022;
accepted Nov. 13, 2022
1Department of Electronics Engineering, Chungnam National
University, Daejeon, 34134, Korea
2LX Semicon, Daejeon, 34027, Korea
3William Paterson University of New Jersey, 07470, US
E-mail : hyyoo@cnu.ac.kr

Efficient Partially-parallel NTT Processor for
Lattice-based Post-quantum Cryptography

Soyeon Choi1, Yerin Shin2, Kiho Lim3, and Hoyoung Yoo1,*

Abstract—This paper presents a partially-parallel
number theoretic transform (NTT) processor design
for polynomial multipliers, which is a key component
of a lattice-based cryptography. Since the data flow of
NTT is similar to that of FFT, studies have been
conducted to apply the FFT structure to fit the NTT
structure. However, the previous architectures suffer
from high hardware complexity and low throughput.
Thus, we propose a new partially-parallel design that
models the data reordering process and derives a
generalized data reordering circuit. The proposed
partially parallel design solved the problem of the
previous architectures. Moreover, it provides imp-
roved performance through efficient data reordering.
Synthesis results shows that the proposed 8-parallel
512-point NTT processor achieves 15% to 76%
improvements in terms of hardware efficiency
compared to the previous architectures. As a result,
the proposed NTT processor is a good solution in a
more diversified lattice-based crypto-processor with
constrained usage conditions.

Index Terms—Lattice-based cryptography, number
theoretic transform, polynomial multiplier, post-
quantum crypto-processer

I. INTRODUCTION

Encryption for reliable security is one of the most
important elements in modern communication systems
[1]. However, the classic encryption techniques face a
crisis of collapse due to the rapidly developing quantum
computing technology [2]. It has been proven that
modern cryptographic algorithms such as Ribest, Shamir
and Adelman (RSA) and Elliptic Curve Cryptography
(ECC) can be nullified within a short time [3] by the
Shor quantum algorithm [4]. Mathematic problems such
as prime factorization, which take a long time to
calculate with current computing performance, are no
longer valid as cryptographic algorithms in quantum
computers. Therefore, studies on post-quantum
cryptography (PQC) have been actively conducted
centered on the National Institute of Standards and
Technology (NIST), and standardization work has been
carried out over three rounds since 2016 [5]. The PQC
standardization work is selecting the final candidate
based on five basic technologies: lattice-based
cryptography [6], code-based cryptography [7], multi-
variate-polynomial-based crypto-graphy [8], isogeny-
based cryptography [9], and hash-based cryptography
[10]. Among them, the lattice-based crypto-system is
most frequently selected as the final candidate [11]
because of its high cryptographic efficiency, affordable
complexity, and fully homomorphic encryption (FHE)
applicability [12, 13] and is perceived as the candidate
with the most potential for the NIST standard.

In step with the PQC algorithm standardization work,
studies on hardware development have been actively
conducted [14-18]. The operation that requires the
longest computation time in lattice-based cryptography is

460 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

polynomial multiplication [19], so studies to improve
performance such as processing speed and hardware
utilization efficiency have been intensively conducted
centered on polynomial multiplication [20, 21]. Recently,
many researchers have studied NTT-based polynomial
multiplication algorithms and hardware [22, 23].
Whereas Fast Fourier Transform (FFT) carries out
operations on a complex plane, Number Theoretic
Transform (NTT) performs operations of values on a
finite ring rather than complex numbers based on roots of
unity. Because the hardware architecture of FFT has been
studied for more than 50 years, a stably studied FFT
architecture can be applied to NTT [24, 25]. Similar to
the fully-parallel architecture of FFT, the fully-parallel
architecture that maps the dataflow of NTT directly to
hardware is intuitive and simple. However, identically to
the fully-parallel architecture of the FFT [24], the fully-
parallel architecture of the NTT also has a problem that
hardware complexity increases linearly as the length of
the NTT increases [26]. To solve this problem, a design
that provides the partially parallel architecture of NTT
through a feedback type and a feedforward type was
proposed in a similar method applied in FFT [26-29].
Since the partially-parallel architecture of the NTT
provides the desired timing as a delay element of the
feedback loop, single-path delay feedback (SDF) [26]
and multi-path delay feedback (MDF) [27] have been
proposed as structures to support the partially-parallel
architecture. In addition, a single-path delay commutator
(SDC) [28] and multi-path delay commutator (MDC)
[29] that provide the desired timing through an additional
reordering circuit have been proposed. However, since
SDF [26] and SDC [28] have low throughput due to
serial operation, there are restrictions in real encryption
hardware implementation, and in the case of MDF [27]
and MDC [29], low hardware usage efficiency has been
raised as a problem. In this paper, the data reordering
sequences between processing elements by step are
analyzed to propose an efficient partially-parallel NTT
processor structure that can be applied to various parallel
factors. The main contributions of this paper are
summarized as follows:

1) The proposed design technique concentrates on the
data rearrangement process, which provides matrix
representation and draws a reordering circuit to
present a comprehensive implementation method.

2) Since the proposed structure can be applied to any
parallel factor, a hardware structure optimized to fit
the given design constraints can be provided.

3) The proposed structure is a partially parallel
architecture that solves the problem of
parallelization restriction by the high radix of the
MDC design [29] and the problem of huge
hardware complexity of the MDF design [27].

4) The proposed structure achieves 100% hardware
utilization efficiency to provide the best
performance in terms of hardware complexity and
throughput.

The rest of the paper is organized as follows. In the

second chapter, the theoretical background necessary for
this study is identified. Contents regarding NTT-based
polynomial multiplication algorithms and general NTT
processors are included. In the third chapter, the previous
partially-parallel NTT processor architecture is examined,
and its problems are analyzed. In the fourth chapter, a
design technique for a new partially parallel architecture
is proposed, and then in the fifth chapter, the
performance of the NTT processor designed by applying
the relevant technique is evaluated. Finally, in the last
chapter, the conclusion of this study is presented.

II. BACKGROUND

1. NTT Polynomial Multiplication

Lattice-based cryptosystems carry out the encryption

and decryption of problems such as Ring-Learning with
Error (Ring-LWE) [30, 31] and Module Learning with
Error (Module-LWE) [32] by performing polynomial
addition, multiplication, and modulo operations on a
finite ring. Because polynomial multiplication has higher
complexity compared to other arithmetic operations, it is
essential to implement efficient polynomial
multiplication for lattice-based cryptographic hardware.
The finite ring is defined as [] / ()q qR x f x= Z , where

1(mod 2)q N≡ is a prime number and () 1Nf x x= + is
an irreducible polynomial of degree N [33]. Any two
polynomials ()a x , ()b x on the finite ring Rq can be
expressed as

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 461

2 1

0 1 2 1

2 1
0 1 2 1

()
() .

N
N

N
N

a x a a x a x a x
b x b b x b x b x

−
−

−
−

= + + + +

= + + + +
 (1)

A polynomial ()c x of length 2 1N − can be obtained

by multiplying two polynomials of length N, and the
coefficient of ()c x can be calculated with (2).

0

i

i n i n
n

c a b −
=

= ∑ , (2)

Since (2) representing polynomial multiplication is the

same as the operation to obtain the discrete convolution
() ()* ()c x a x b x= , polynomial multiplication can be

calculated with discrete convolution. However, the
convolution operation in (2) has a large operation
quantity of 2()O N , so it is generally processed as
multiplication through domain transformation. The
coefficient of the polynomial can be changed into the
frequency domain using Discrete Fourier Transform
(DFT). Instead of the time domain convolution operation,
pointwise multiplications for coefficients of ()a x and

()b x are carried out, in the frequency domain. Finally,
inverse DFT (IDFT) of ()c x in the frequency domain is
performed to obtain the ()c x of the time domain.

() ()* ()

((()) (()))
c x a x b x

IDFT DFT a x DFT b x
=
=

, (3)

In this case, the lengths of ()a x and ()b x must be

adjusted to 2 1N − , which is the length of ()c x , for
DFT and IDFT, and zero-padding is necessary [23].

However, the DFT and IDFT also have an operation
quantity of 2()O N . The FFT algorithm, well known as a
method to transform the domain quickly by reducing the
operation quantity, is applied. The DFT of (4) can reduce
the operation quantity to (log)O N N as shown in (5)
through the divide-and-conquer method by using the
periodic and conjugate properties of ij

NW .

1

0

N
ij

i j N
j

A a W
−

=

= ∑ , (4)

(/2) 1 (/2) 1

2 /2 2 1 /2
0 0

N N
ij i ij

i j N N j N
j j

A a W W a W
− −

+
= =

= +∑ ∑ , (5)

Furthermore, a complex number-based operation for

FFT can be replaced with a integer number-based
operation by employing NTT while maintaining the

properties of FFT [22, 23]. As shown in Fig. 1(a), in FFT,
2 /j N

NW e π= is defined as a primitive root, and as shown

in Fig. 1(b), in NTT, mod 1NW q = is defined as a
primitive root [34]. NTT and inverse NTT (INTT) are
expressed with the following (6) and (7).

1

0
mod

N
ij

i j
j

A a W q
−

=

= ∑ , (6)

1

1

0
mod

N
ij

i j
j

a N A W q
−

− −

=

= ∑ , (7)

Accordingly, (3) representing the DFT-based

polynomial multiplication operation [35] can be
expressed as (8) representing NTT-based polynomial
multiplication.

() ()* ()

((()) (()))
c x a x b x

INTT NTT a x NTT b x
=
=

, (8)

e
12
16j2π e

13
16j2π

e
14
16j2π

e
15
16j2π

e
5
16j2π

e
6
16j2π

e
7
16j2π

e
8
16j2π

e
9
16j2π

e
10
16j2π

e
11
16j2π

e
4
16j2π

e
3
16j2π

e
2
16j2π

e
1
16j2π

e
0
16j2π

(a) FFT for N = 16

9 = 32 mod 17

10 = 33 mod 17
34 mod 17 = 13

3 = 31 mod 17

1 = 30 mod 17

4 = 312 mod 17
12 = 313 mod 17

2 = 314 mod 17

6 = 315 mod 17

38 mod 17 = 16

39 mod 17 = 14

310 mod 17 = 8

311 mod 17 = 7

35 mod 17 = 5

36 mod 17 = 15

37 mod 17 = 11

(b) NTT for N = 16

Fig. 1. Primitive root for N = 16.

DIT INTT

ψ

ψ

ψ‐1 a(x)

b(x)

c(x)

: normal multiplier
: pointwise multiplier

DIF NTT

DIF NTT

Fig. 2. Overall structure for NTT polynomial multiplication.

462 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

Finally, a negative wrapped convolution that
efficiently removes the zero-padding that occurs in the
NTT and INTT processes of (8) was proposed [36].
According to [36], the zero-padding process that may
occur during NTT-based polynomial multiplication can
be omitted by multiplying the coefficients of the two
polynomials by ψ that satisfies modW qψ ≡ . The two
polynomial coefficients multiplied by ψ are expressed

as 1 1
0 1 1'() n n

na x a a x a xψ ψ − −
−= + + + and 0'()b x b= +

1 1
1 1

n n
nb x b xψ ψ − −
−+ + . As a result, (8) can be expressed

 1() (('()) ('()))c x INTT NTT a x NTT b xψ−= . (9)

In conclusion, polynomial multiplication using NTT

can be performed reducing the computational complexity
from 2()O N to (log)O N N through integer operation
instead of complex numbers.

2. General NTT Processor

Fig. 2 shows a typical polynomial multiplier

architecture that implements (9), where DIF and DIT
represent decimation-in-frequency (DIF) and decimation-
in-time (DIT), respectively [35]. If the same decimation

is used for all NTTs and INTTs, it is inevitable to add a
bit-reversal circuit to every NTT or INTT [35]. In order
to completely remove the added bit-reversal circuit, the
DIF structure, in which the output is bit-reversal
converted when the inputs are sequential, is generally
applied to the front NTT, and the DIT structure, in which
bit-reversal inputs are sequentially converted and output,
is applied to the rear INTT as shown in Fig. 2. Since the
DIT and DIF algorithms are structurally symmetric [35],
and one of the NTT and INTT structures can be easily
derived by applying the other structure, this paper will
mainly explain the structure of the DIF NTT processor.

A. Fully-parallel Architecture
Fig. 3 shows the DIF NTT processor of a fully-parallel

architecture with 16N = , 17q= , and 3NW = . NTT
for 16N = points is performed over n steps, and N/2
processing elements (PEs) are required for each step,
where n is 2log N . In order to perform the NTT
operation in (6), PE consists of one radix-2 butterfly unit,
three modular reduction units (MR), and one multiplier.
The basic PE is similar to the structure of the FFT, but in
accordance with the characteristics of the lattice-based
cryptoprocessor that must be operated on Rq, modular
reduction is additionally required in the transformation

PE

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x[i]b3b2b1b0
0

8

2

10

4

12

6

14

1

9

3

11

5

13

7

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PE

0

4

2

6

1

5

3

7

8

12

10

14

9

13

11

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PE

PE

0

2

1

3

4

6

5

7

8

10

9

11

12

14

13

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PE

PE

PE

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

X[k]

MR MR

WN
 ij

MR

Processing Element (PE)

stage 1

reordering 1

stage 2

reordering 2

stage 3

reordering 3

stage 4

MR MR

WN
 ij

MR

MR MR

WN
 ij

MR

MR MR

WN
 ij

MR

MR MR

WN
 ij

MR

MR MR

WN
 ij

MR

MR MR

WN
 ij

MR

MR MR

WN
 ij

MR

Fig. 3. Fully-parallel architecture for N = 16.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 463

process over n steps. In this paper, among various
implementations including Barrett and Montgomery
modular reduction [37-39], [39] is used to limit the result
of each operation to 2log 4N = bits.

As shown in Fig. 3, PE operation is performed at every
s stage (1 ≤ s ≤ n) and the PE of the next stage is
performed after rearranging the data. According to [24],
data reordering performs rearrangement while satisfying
the following properties.

NTT pair property: pairs of data processed
simultaneously in the PEs at stage s differ in n sb − for
any N-point NTT with 2logn N= stages.

For instance, the PEs begin by operating on pairs of
data with indexes (0,8), (1,9), (2,10), (3,11), and so forth
after the first stage. By converting these indices to binary,
we obtain (0000,1000), (0001,1001), (0010,1010), and
(0011,1011). Comparing the indices in each pair reveals
that they are identical except for the most significant bit,

3 4 1b b −= . This is true for all the pairs of indices at stage
1. By repeating the analysis for stage 2 and 3, it is clear
that the indices of pairs of data processed by the PEs
differ only in 2b and 1b , respectively. As a result, we
can conclude that the NTT architecture is correct only
when the data pairs input during the same clock period in
all PEs differ in the index bits n sb − . This will serve as
the foundation for the following explanations of the other
structures.

B. Partially-parallel Architecture
As can be observed in Fig. 3, since the fully-parallel

architecture simultaneously computes N data through a
total of 2(/ 2) logN N PEs and reordering networks by
stage, it has high throughput of N points per clock cycle.
However, in terms of hardware complexity, it has a
severe disadvantage that the required number of PEs
increases linearly as N increases. To alleviate the high
hardware complexity of the fully-parallel architecture, a
partially- parallel architecture that simultaneously
processes 2 pP = data according to parallel factor P has
emerged. Fig. 4 shows the general structure of the
partially-parallel NTT. The partially-parallel structure is
composed of n stages connected in series with data
flowing from stage 1 to stage n. Since each stage
contains P inputs and P outputs, N data points are

subdivided into N / P number of P points and thus the
throughput becomes P data per clock cycle. Note that
each stage s of the architecture performs all calculations
associated with one stage of the NTT algorithm.

To convert the fully-parallel architecture shown in Fig.
3 to the partially-parallel architecture shown in Fig. 4,
data rearrangement must be considered. The output pair
with the natural order of s stage is rearranged while
satisfying the pair property in the next s + 1 stage. The
partially-parallel architecture is largely divided into a
feedback type [26, 27] and a feedforward type [28, 29]
according to the data rearrangement processing method.
First, the feedback type shown in Fig. 5(a) proceeds with
data reordering using a feedback loop. In this case, some
output of butterfly unit (BF) is fed back as the delay
element at the same stage through the feedback loop, so

INP−2

INP−1

IN2

IN3

IN0

IN1

PE

PE

PE

PE

PE

PE

OUTP−2

OUTP−1

OUT2
OUT3

OUT0
OUT1

Re
or
de

rin
g
1

Re
or
de

rin
g
2

PE

PE

PE

Re
or
de

ri
ng

 n
‐1

stage 1 stage 2 stage n

Fig. 4. General partially-parallel architecture.

OUT0

L

MR MR

MR

PE

WN
 ij

IN0

BF

Feedback

(a) Feedback architecture

Reordering

MR MR

MR

PE

WN
 ij

IN0

IN1

OUT0

OUT1
BF

L

L

(b) Feedforward architecture

Fig. 5. Feedback and feedforward architecture.

Table 1. The previous architectures.

Type Architecture Parallelism
SDF Serial

Feedback
MDF Partially-parallel
SDC Serial

Feedforward
MDC Partially-parallel

464 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

the operation of the input pair where a difference of n sb −
occurs in the next stage. On the other hand, in the
feedforward type shown in Fig. 5(b), the data processed
from the PE of each stage uses a separate reordering
circuit to match the input pair with a difference of n sb −
in the next stage.

III. PREVIOUS WORKS

The previous NTT architectures are classified in Table
1. The table denotes feedback and feedforward types [26-
29]. First, the feedback type satisfies the NTT pair
property by providing the desired timing with the delay
elements via the feedback loop. They are classified as
single-path delay feedback (SDF) [26] or multi-path
delay feedback (MDF) [27] based on their serial or
parallel processing configurations. Second, the
feedforward type accomplishes the NTT pair property
with an additional reordering circuit following PE. They
are classified as single-path delay commutator (SDC)
[28] or multi-path delay commutator (MDC) [29], based
on their serial or parallel processing capabilities.

1. Single-path Delay Feedback (SDF) Design

Fig. 6 shows the 16N = point SDF design, which is
a representative design based on feedback. The SDF
design has serial data flow because it uses a single path
and satisfies the NTT pair property using the delay
element of the feedback loop [26]. SDF receives data at
each stage in the natural order of the index from 0 to 15.
For serial data flow, pairs of data that differ by n sb −
arrive with a difference of 2n s− clock cycles according
to the natural order. At each stage, a buffer of length

2n sL −= is used to store these pairs of data concurrently.
Thus, the buffer’s output is calculated simultaneously
with the stage’s input in the PE. Following that, one of

the butterfly’s outputs is sent to the multiplier, while the
other is placed in the buffer. As illustrated in Fig. 6, each
stage consists of one BF, one multiplier, three MRs, and a
FIFO with a length of 2n sL −= . When all hardware
resources are added for all stage {1, , }s n= , 2log N
BFs, 2log N multipliers, 23log N MRs, and 1N −
FIFO are required in total. Compared to the fully-parallel
architecture shown in Fig. 3, the SDF design [26] can
overwhelmingly improve the hardware complexity
problem because it uses a single path. However, it has the
problem that the hardware throughput is processing one
data per clock due to serial data flow, and hardware
utilization is reduced to 50% due to the feedback loop.

2. Multi-path Delay Feedback (MDF) Design

The MDF design [27] is the parallel version of the

SDF design [26]. Fig. 7 shows a 16-point 4-parallel MDF
design, which consists of the first independent serial PEs
and the second combining parallel PEs. Let us compare
the SDF in Fig. 6 and MDF in Fig. 7. Whereas data in the
SDF [26] is processed in series in natural order from stage
1 to n = 4, MDF processes P data flow independently
through the first serial PEs and combines P data flow
through the second parallel PEs [27]. The first serial PEs
are the same as the original SDF [26] except for the fact
that the length of the buffers in MDF [27] is divided by P
with respect to those in the SDF [26]. Since each
independent serial part provides parallel streams that differ
in the bit n sb − , the remaining parallel part simply
combines those parallel streams with shuffling circuits.
The general P-parallel MDF [27] uses 2log (/)P N P

2(/ 2) lo ,g BFsP P+ 2 2log (/) (/ 2) logP N P P P+

multi-pliers, 2 23(log (/) (/ 2) log)P N P P P+ MRs, and
N P− FIFO. Consequently, the MDF design [27] can
parallelize the SDF design [26] by 2 pP = to improve
the throughput by P times. However, it uses

OUT0

8

MR MR

MR

PE

WN
 ij

IN0

BF

Feedback

4

MR MR

MR

PE

WN
 ij

BF

Feedback

2

MR MR

MR

PE

WN
 ij

BF

Feedback

1

MR MR

MR

PE

WN
 ij

BF

Feedback

stage 1 stage 2 stage 3 stage 4

Fig. 6. The SDF architecture for N = 16.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 465

approximately P times more hardware than the SDF
design [26], and like the SDF design [26], it fails to
achieve full hardware utilization.

3. Single-path Delay Commutator (SDC) Design

In comparison to feedback designs [26, 27],

feedforward designs [28, 29] incorporate additional
reordering circuitry to ensure that the NTT pair property
is satisfied. Fig. 8 illustrates a 16-point SDC for serial
data processing. Despite the fact that the SDC processes
serial data [28], it is based on the 2-parallel MDC
depicted in Fig. 9(a). Let us begin with the 2-parallel
MDC [29]. In 2-parallel MDC [29], it is assumed that
input data differentiated in bit arrive, but the data order is

not consistent between stages, necessitating the
participation of shuffling circuits to reorder the data as
shown in Fig. 9(a). The reordering circuits consist of
upper and lower paths, each of which demands buffers
and multiplexers to satisfy the NTT pair property. First,
the lower path is delayed using the buffers, and then both
upper and lower sets of data are swapped using
multiplexers. Lastly, the upper path is delayed using
buffers, resulting in an aligned data pair.

The SDC in Fig. 8 receives input data in series. The
only difference between SDC [28] and 2-parallel MDC
[29] is in the data input and output. As shown in Fig. 8,
the first half of the data is routed through the input buffer,
while the second half is connected to the SDC’s lower
input [28]. Finally, the output is serialized once again.

IN0

IN1

IN2

IN3

MR MR

MR

WN
 ij

BF

MR MR

MR

WN
 ij

BF

MR MR

MR

WN
 ij

BF

MR MR

MR

WN
 ij

BF

OUT0

OUT1

OUT2

OUT3

stage 4

reordering

Combining parallel processing

Four independent serial processing

2

MR MR

MR

PE

WN
 ij

BF

Feedback

1

MR MR

MR

PE

WN
 ij

BF

Feedback

2

MR MR

MR

PE

WN
 ij

BF

Feedback

1

MR MR

MR

PE

WN
 ij

BF

Feedback

2

MR MR

MR

PE

WN
 ij

BF

Feedback

1

MR MR

MR

PE

WN
 ij

BF

Feedback

2

MR MR

MR

PE

WN
 ij

BF

Feedback

1

MR MR

MR

PE

WN
 ij

BF

Feedback

stage 1 stage 2 stage 3

Fig. 7. The MDF architecture for N = 16 and P = 4.

4

4

reordering 1

MR MR

MR

PE

WN
 ijIN0

OUT0

OUT1
BF

2

2

MR MR

MR

PE

WN
 ij

BF

1

1

MR MR

MR

PE

WN
 ij

BF

OUT0

8MR MR

MR

PE

WN
 ij

BF

8

reordering 2 reordering 3
stage 1 stage 2 stage 3 stage 4

Fig. 8. The SDC architecture for N = 16.

466 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

Due to data parallelization, SDC [28] is only operational
50% of the time, with the remaining 50% used to receive
and produce data. The general SDC employs a total of

2log N BFs, 2log N multipliers, 23log N MRs, and
2(1)N − FIFO in terms of hardware resources.

4. Multi-path Delay Commutator (MDC) Design

The MDC design has a parallel design with a higher

parallel factor because it uses high-radix for radix-2
based 2-parallel MDC [29]. Fig. 9(a) and (b) show the 2-
parallel MDC and 4-parallel MDC designs, respectively.
The 2-parallel MDC [29] has the same structure as the
SDC design [28] after removing additional input/output
circuits required for serial processing. Fig. 9(a) processes
two data per one PE and processes two data per clock
based on radix-2, and one stage of the 2-parallel MDC
shown in Fig. 9(a) carries out the operation assigned to
one stage of the fully-parallel architecture [26]. On the
other hand, Fig. 9(b) processes four data per one PE and
four data per clock based on radix-4. One stage of the 4-
parallel MDC in Fig. 9(b) performs the operations
assigned to two successive stages of the 2-parallel MDC.

A typical P-parallel MDC design [29] requires log pP N

BFs, (1) log pP N− multipliers, 2(1) log pP N− MRs,

and N P− FIFO.

In conclusion, the P-parallel MDC design [29]
achieves a throughput improvement by P times by
changing the 2-radix structure of the 2-parallel MDC
design to the P-radix structure. Due to the limit on the
use of the trivial multiplier, the high radix application of
the NTT does not significantly improve performance. In
addition, it has the disadvantage that hardware utilization
is limited by P times due to the input/output delay circuit.

IV. PROPOSED PARTIALLY-PARALLEL NTT

DESIGN

Although the MDF design [27] and the MDC design
[29] succeeded in achieving high throughput by
converting the SDF design [26] and the SDC design [28]
into a parallel architecture, respectively, the resultant
increase in hardware complexity and decrease in
hardware utilization are among the problems that must be
solved. Therefore, we propose a new partially-parallel
NTT architecture that can improve hardware
performance by combining the advantages of MDF [27]
and MDC design [29]. Similar to the overall structure of
MDF [27], the proposed partially-parallel NTT
architecture composes many independent serial structures
on the front, and a parallel structure combining them on
the rear. For the technique to design a partially-parallel
NTT, the reordering structure that satisfies the NTT pair

4

4

reordering 1

MR MR

MR

PE

WN
 ij

IN0 OUT0

OUT1
BF

2

2

MR MR

MR

PE

WN
 ij

BF

1

1

MR MR

MR

PE

WN
 ij

BF

MR MR

MR

PE

WN
 ij

BF

reordering 2 reordering 3
stage 1 stage 2 stage 3 stage 4

IN1

OUT0

OUT1

(a) The 2-parallel MDC architecture

reordering 1

MR MR

PE

WN
 ij

IN0

BF

stage 1

IN1 1

2

3MR MR

MR

WN
 ij

IN2

IN3

MR

WN
 ij

3

2

1

MR MR

PE

WN
 ij

BF

stage 2

MR MR

MR

WN
 ij

MR

WN
 ij

OUT0

OUT1

OUT2

OUT3

(1, 1,
 1, 1)

(1, -j,
 -1, j)

(1, -1,
 1, -1)

(1, j,
 -1, -j)

(1, 1,
 1, 1)

(1, -j,
 -1, j)

(1, -1,
 1, -1)

(1, j,
 -1, -j)

MR MR

(b) The 4-parallel MDC architecture.

Fig. 9. The MDC architecture for N = 16 and P = 2 and 4.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 467

property is mainly analyzed and a partially-parallel NTT
structure is presented based on the analysis. In this paper,
the 4-parallel structure for 16-point NTT is used as an
example without loss of generality. The advantages of the
proposed partially-parallel NTT design are emphasized
through direct comparison with 4-parallel MDF and
MDC. Finally, the structures of parallel factors 4, 8, and
16 are presented for the 512-point NTT structure to
provide a practical example and show that it can be
easily applied to various parallel factors.

1. Proposed Partially-parallel NTT Algorithm

The proposed new partially-parallel NTT design begins

with analyzing the data rearrangement processes to
transform them to fit the given parallel factors. Fig. 10
shows the rearrangement processes extracted from the 16-
point fully-parallel architecture in Fig. 3. The input of the
reordering circuit has a pair that differs only in n sb − bits
at stage s and satisfies the pair property, and the output of
the reordering circuit are described in natural order. For
example, in the fully-parallel architecture for N = 16 points
in Fig. 3, the NTT algorithm is performed from stage 1 to
4, in reordering 1 shown in Fig. 10(a), there is a difference
in 4 1 3b b− = in each pair, and in reordering 2 shown in Fig.
10(b), there is a difference in the 4 2 2b b− = bit of each

pair. Similarly, in reordering 3 shown in Fig. 10(c), it can
be seen that 1b of the pair are different. In the previous
NTT structure including SDF [26], MDF [27], SDC [28],
and MDC [29], it can be seen that the NTT pair property is
satisfied for all data pairs in the NTT processing process
regardless of serial and parallel data flow, feedback and
feedforward types [26-29].

In order to derive the proposed partially-parallel
architecture based on Fig. 10, a new scheduling task
should be performed that transforms each of 1N×
matrices into (/)P N P× matrices. Fig. 10 and 11
represent 16 1× matrices and 4 4× matrices for
reordering, respectively. For matrix representation, the
column of the matrix means one clock cycle and the row
means the number of data processed per one clock cycle.
Note that P row determines the number of PEs as / 2P
to process P data in parallel. The (/)P N P× matrix
represents P data in one clock for /N P clock cycles to
process the entire N data. Whereas the 16 1× matrices
shown in Fig. 10 rearranges sixteen data at a single clock
in a fully-parallel manner, the 4 4× matrices shown in
Fig. 11 processes four data for four clock cycles in a
partially-parallel manner. As with the transformed 16 1×
matrix where the NTT pair property is maintained, the
NTT pair property is also maintained in all 4 4×
matrices.

reordering 1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(0000)

(1000)

(0010)

(1010)

(0100)

(1100)

(0110)

(1110)

(0001)

(1001)

(0011)

(1011)

(0101)

(1101)

(0111)

(1111)

0

8

2

10

4

12

6

14

1

9

3

11

5

13

7

15

16
 p
ar
al
le
l

pair

pair

pair

pair

pair

pair

pair

pair

reordering 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(0000)

(0100)

(0010)

(0110)

(0001)

(0101)

(0011)

(0111)

(1000)

(1100)

(1010)

(1110)

(1001)

(1101)

(1011)

(1111)

0

4

2

6

1

5

3

7

8

12

10

14

9

13

11

15

16
 p
ar
al
le
l

pair

pair

pair

pair

pair

pair

pair

pair

reordering 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(0000)

(0010)

(0001)

(0011)

(0100)

(0110)

(0101)

(0111)

(1000)

(1010)

(1001)

(1011)

(1100)

(1110)

(1101)

(1111)

0

2

1

3

4

6

5

7

8

10

9

11

12

14

13

15

16
 p
ar
al
le
l

pair

pair

pair

pair

pair

pair

pair

pair

(a) Reordering 1 (b) Reordering 2 (c) Reordering 3

Fig. 10. Reordering analysis of (a) reordering 1; (b) reordering 2; (c) reordering 3.

468 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

More importantly, through transformation into 4 4×
matrices, the data pair that needs swapping can be
identified out of the entire 16 data. The pairs that require
swapping are highlighted in Fig. 11 and summarized as
follows:

Stage 1: (1,8), (3,10), (5,12), (7,14)
Stage 2: (1,4), (3,6), (9,12), (11,14)
Stage 3: (1,2), (5,6), (9,10), (13,14)

As shown in Fig. 11, the swapping pairs in stages 1

and 2 require delay factors as much as 2 and 1, and the
swapping pairs in stage 3 does not require any delay.

In order to satisfy the NTT pair property by changing
the 16 1× matrix of the fully-parallel architecture to the
4 4× matrix of the partially-parallel architecture, the
design of a reordering circuit that performs swapping to
an appropriate clock is carefully designed. In this case,
the required hardware structure varies depending on
whether there is a delay between swapping data and
inter/intra-PE. To explain in more detail, the reordering
circuit used in SDC [28] and MDC [29] is suitable in
cases where delay is required, as with stage 1 and stage 2,
and swapping occurs in intra-PE. Upper and lower paths

of reordering circuits can be exchanged with the desired
delay difference through the FIFO and multiplexers of
each path. Additionally, as with stage 3, when swapping
occurs between inter-PEs without requiring delay, it is
easy to implement simple hardwiring similar to the last
combining circuitry of MDF [27]. Since the replacement
data pair already occurs in the same clock, data
rearrangement can be completed with a simple
interconnection without delay.

2. Proposed Partially-parallel NTT Structure

With the matrix transformation, analysis, and

derivation of a rearrangement circuit, the finally
proposed 4-parallel structure for 16-point NTT is as
shown in Fig. 12. Basically, since P data are processed in
parallel per clock cycle, each stage consists of / 2P
PEs, and a rearrangement circuit depicted in Fig. 11 was
added between each stage to operate to fit the matrix
operation. Between stage 1 and stage 2, a feedforward
type reordering circuit was built with delay times 2 and 1,
and in stage 3, they were interconnected with hardwiring.
In conclusion, two independent MDC designs [29]
operate in 2-parallel in the front part of the proposed
partially-parallel NTT architecture, and parallel
structures similar to MDF design [27] combine
independent streams in the rear part. In other words, the
overall structure is similar to the MDF design in Fig. 7,
but the internal structure is composed of the 2-parallel
MDC design in Fig. 9, not the feedback-based SDF in
Fig. 6. To sum up, the proposed NTT processor requires

2(/ 2) log BFs,P N 2(/ 2) logP N multipliers,

23(/ 2) logP N MRs, and N P− FIFO for partially-
parallel P. The proposed partially-parallel architecture
can achieve 100% hardware utilization because it does
not internally include the feedback loop that MDF [27]
has and minimizes the waste of the delay element of the
reordering circuit due to the high radix of MDC [29]. In
conclusion, it is possible to provide higher throughput
compared to SDF [26] and SDC [28] while absorbing all
the advantages of MDF [27] and MDC [29].
Consequently, the design method for the proposed
partially-parallel architecture can be described as
follows:

1) Create 1n− pieces of 1N× matrices by
reordering for a fully-parallel architecture

0

8

2

10

0

4

12

6

14

1

9

3

11

5

13

7

15

123

0

1

2

3

0

4

5

6

7

8

9

10

11

12

13

14

15

123

2

2
reordering 1

2

2

4
pa
ra
lle
l pair

pair

time time

(a) Reordering 1

1

1
reordering 2

0

4

2

6

0

1

5

3

7

8

12

10

14

9

13

11

15

123

0

1

2

3

0

4

5

6

7

8

9

10

11

12

13

14

15

123

1

1

4
pa
ra
lle
l pair

pair

time time

(b) Reordering 2

reordering 3

0

2

1

3

0

4

6

5

7

8

10

9

11

12

14

13

15

123

0

1

2

3

0

4

5

6

7

8

9

10

11

12

13

14

15

123

4
pa
ra
lle
l pair

pair

time time

(c) Reordering 3

Fig. 11. 4×4 matrix representation for (a) reordering 1; (b)
reordering 2; (c) reordering 3.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 469

2) Transform the 1N× matrices into 1n− pieces of
(/)P N P× matrices by stage for a partially-parallel

architecture
3) Check swapping data by stage and configure the

reordering circuit
4) Place / 2P PEs for each stage and interconnect

them with the reordering circuit

Fig. 13 shows practical examples of N = 512, q =

12,289, W = 3 using the design method above. While
changing the parallel factor to 4, 8, and 16, it can be seen
that the above systematic design method is applied
regardless of the NTT length and parallel factor. Note
that if the parallel factor P is 2, the proposed partially-
parallel structure will become a 2-parallel MDC [29], and
if the parallel factor P is equal to the NTT length N, the
proposed partially-parallel architecture will become a
fully-parallel architecture [26]. It is important to note that
since the proposed partially-parallel architecture
proposes a comprehensive structure and can be applied to
any P, it is possible to implement the most efficient NTT
processor under the constraints by selecting a P suitable
for the design environment.

V. EXPERIMENTAL RESULTS

Table 2 shows a quantitative comparison between the
proposed partially parallel NTT processor structure and
the previous structures in terms of hardware resources,
latency, throughput, and utilization. Note that utilization
is defined as the ratio of the number of clocks during
which PE conducts valid and effective operations to the
total number of running clocks in order to demonstrate
the efficiency of the hardware in addition to the typical
hardware performance metrics. Representative hardware
performance metrics were compared for the proposed

NTT processor and the previous fully parallel
architecture, serial architectures, and partially parallel
architectures. In this case, N represents the length of the
NTT and P represents a parallel factor. As shown in Fig.
3, the fully parallel architecture is intuitive and can
support high throughput by processing N data per clock
[26]. However, it has a problem that hardware
complexity increases linearly along with the increase in
the NTT length, and in fact a high throughput of
processing N data per clock cycle is not required in a
realistic system. Next, the SDF [26] in Fig. 6 and SDC
[28] in Fig. 8, which are serial structures, satisfy the NTT
pair property through the feedback type and feedforward
type, respectively, and can serialize a fully-parallel
architecture. Although they can reduce hardware
including large amounts of butterflies, multipliers,
modular reductions, and memories compared to the fully-
parallel architecture [26], they provide a low throughput
of processing one data per clock. Finally, the MDF [27]
in Fig. 7 and MDC [29] in Fig. 9 designs can partially
parallelize SDF [26] and SDC [28] to provide affordable
hardware complexity while providing realistic
throughput. However, they waste delays due to the
inefficient data rearrangement circuit or impose
limitations on the use of high radix structures, resulting
in low level of hardware utilization. The proposed
partially-parallel NTT design in Fig. 12 solves the
problem by utilizing the advantages of both designs. Due
to the efficient reordering circuit, the proposed partially-
parallel design has the lowest hardware complexity
quantitatively among partially-parallel structures
regardless of NTT length N and parallel factor P.
Moreover, Table 3 provides a numerical comparison by
substituting the length N for 512 and the parallel factor P
for 8. Through Table 2 and 3, the advantages of each
architecture including fully-parallel, serial, and partially-

2

2

reordering 1

MR MR

MR

PE

WN
 ij

IN0 OUT0

BF

1

1

MR MR

MR

PE

WN
 ij

BF

MR MR

MR

PE

WN
 ij

BF

MR MR

MR

PE

WN
 ij

BF

reordering 2 reordering 3
stage 1 stage 2 stage 3 stage 4

IN1

OUT0

OUT1

2

2

MR MR

MR

PE

WN
 ij

IN2

BF

1

1

MR MR

MR

PE

WN
 ij

BF

MR MR

MR

PE

WN
 ij

BF

MR MR

MR

PE

WN
 ij

BF

IN3

OUT2

OUT3

Fig. 12. The proposed partially-parallel design for N = 16 and P = 4.

470 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

parallel architectures can be clearly confirmed. Moreover,
it can also be confirmed that the proposed partially-
parallel design always has low hardware complexity,
short latency, and high hardware utilization among
partially-parallel architectures.

Finally, to bring a practical comparison, Table 4
compares the synthesis results for all NTT designs in
Verilog HDL with 200 MHz operating frequency using a

CMOS 180 nm process. Without loss of generality, all
NTT processors were maintained at N = 512, q = 12,289,
W = 3, and P = 8. The hardware complexity, latency,
throughput, and hardware efficiency information
representing the performance of the entire structure were
indicated. The hardware complexity was defined as the
number of 2-input NAND gates, and the efficiency
obtained by dividing the throughput by the complexity

PE
64

PE PE

PE
64

PE PE

PE

PE

reordering 1

stage 1

PE

PE

stage 6 stage 7 stage 8 stage 9

64

64

4

4

PE

PE

reordering 5

stage 5

4

4

2

2

reordering 6
2

2

1

1

reordering 7
1

1

reordering 8
IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3
(a) Proposed partially-parallel design for N = 512 and P = 4

stage 5

PE
32

PE PE

PE
32

PE PE

PE

PE

PE

PE

PE
32

PE PE

PE
32

PE PE

PE

PE

PE

PE

reordering 1

stage 1

reordering 8

stage 6 stage 7 stage 8 stage 9

32

32

32

32

2

2

PE

PE

2

2

PE

PE

reordering 5
2

2

2

2

1

1

1

1

reordering 6
1

1

1

1

reordering 7

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

IN4

IN5

IN6

IN7

OUT4

OUT5

OUT6

OUT7
(b) Proposed partially-parallel design for N = 512 and P = 8

stage 5

PE
16

PE PE

PE
16

PE PE

PE

PE

PE

PE

PE
16

PE PE

PE
16

PE PE

PE

PE

PE

PE

PE
16

PE PE

PE
16

PE PE

PE

PE

PE

PE

PE
16

PE PE

PE
16

PE PE

PE

PE

PE

PE

reordering 1

stage 1 stage 6 stage 7 stage 8 stage 9

16

16

16

16

16

16

16

16

1

1

PE

PE

1

1

PE

PE

1

1

PE

PE

1

1

PE

PE

reordering 5

1

1

1

1

1

1

1

1

reordering 6 reordering 7 reordering 8

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

IN4

IN5

IN6

IN7

OUT4

OUT5

OUT6

OUT7

IN8

IN9

IN10

IN11

OUT8

OUT9

OUT10

OUT11

IN12

IN13

IN14

IN15

OUT12

OUT13

OUT14

OUT15

(c) Proposed partially-parallel design for N = 512 and P = 16

Fig. 13. The proposed partially-parallel design for N = 512 and P = 4, 8, and 16.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 471

was additionally used to make it easier to understand the
results of performance improvement of the proposed
structure. Consequently, it can be seen in the synthesis
results in Table 4 that the proposed structure shows the
best efficiency by efficiently implementing the
rearrangement circuit. In more detail, the proposed
partially-parallel architecture achieved 15% efficiency
improvement thanks to the smaller hardware usage
compared to the fully-parallel architecture [26], and
achieved efficiency improvements of 66% and 74%
thanks to the higher throughput compared to the serial

architectures of SDF [26] and SDC [28], respectively.
With the improvement of the rearrangement structure
compared to MDF [27] and MDC [29], which are
partially parallel architectures, efficiency improvements
of 43% and 76%, respectively, were achieved. Although
Table 4 presents the synthesis results only for P = 8, it
can be inferred that it has the highest efficiency for any P
according to Table 2. Therefore, the proposed NTT
design can respond flexibly to the lattice-based post-
quantum cryptosystem that has various design
requirements.

Table 2. Comparison on hardware complexity.

Architecture Fully parallel Serial Partially Parallel (P)
Design Fully parallel [26] SDF [26] SDC [28] MDF [27] MDC [29] Proposed

Butterflies 2(/ 2)(log)N N 2log N 2log N
()

2

2

log (/)
(/ 2) log

P N P
P P+

 2 log pP N 2(/ 2)(log)P N

Multipliers 2(/ 2)(log)N N 2log N 2log N
()

2

2

log (/)
(/ 2) log

P N P
P P+

 (1) log pP N− 2(/ 2)(log)P N

Modular
reduction 23(/ 2)(log)N N 23(log)N 23(log)N

()
2

2

3 log (/)
3(/ 2) log
P N P

P P+
 2(1) log 1pP N− + 23(/ 2)(log)P N

Delays - N − 1 2(N − 1) N − P N P− N − P

Latency 1 N − 1 N − 1 (/) 1N P − 2 / 1N P − (/) 1N P −

Throughput N 1 1 P P P

Utilization 100 % 50 % 50 % 50(1 log)N P+ % 100 % 100 %

Table 3. Comparison on hardware complexity for N = 512

Architecture Fully parallel Serial Partially Parallel (P = 8)
Design Fully parallel [26] SDF [26] SDC [28] MDF [27] MDC [29] Proposed

Butterflies 2,304 9 9 60 192 36
Multipliers 2,304 9 9 60 27 36
Modular
reduction 6,912 27 27 180 55 108

Delays - 511 1,022 504 504 504
Latency 1 511 511 63 127 63

Throughput 512 1 1 8 8 8
Utilization 100 % 50 % 50 % 66 % 100 % 100 %

Table 4. Synthesis result for N = 512

Architecture Fully parallel Serial Partially Parallel (P = 8)
Design Fully parallel [26] SDF [26] SDC [28] MDF [27] MDC [29] Proposed

Gate count
[#NAND] 39,789K 196K 257K 966K 955K 553K

Latency
[ns] 5 2,555 2,555 315 635 315

Throughput
[Gbps] 102.4 0.23 0.23 1.62 0.81 1.62

Efficiency
[Kbps/#NAND] 2.57 1.02 0.78 1.68 0.84 2.94

472 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

VI. CONCLUSION

In this paper, a new partially parallel NTT processor
architecture applicable to polynomial multiplication was
proposed to improve the cryptographic processor
efficiency of lattice-based post-quantum cryptography.
The proposed structure analyzes the data rearrangement
processes as matrices derives and a data rearrangement
circuit and the entire structure using the generalized data
rearrangement scheduling process. As a result, the
problems of the high complexity of the previous fully-
parallel architecture [26] and low throughput of the serial
architecture SDF [26] and SDC [28] designs were solved.
It provides improved performance in terms of hardware
complexity and utilization through efficient data
rearrangement compared to partially parallel MDF [27]
and MDC [29]. Consequently, the proposed structure
enables the design of a partially parallel N-point NTT
processor that is easily optimized even with changes in
NTT length N and parallel factor P. It can be applied to a
lattice-based post-quantum crypto-processor for a wider
variety of devices with a limited use environment.

ACKNOWLEDGMENTS

This work was supported by research fund of
Chungnam National University.

REFERENCES

[1] T. N. Tan and H. Lee, "High-Secure Low-Latency
Ring-LWE Cryptography Scheme for Biomedical
Images Storing and Transmitting," in Proc. 2018
IEEE International Symposium on Circuits and
Systems (ISCAS), 2018, pp. 1-4.

[2] D. -e. -S. Kundi, A. Khalid, S. Bian, C. Wang, M.
O’Neill and W. Liu, "AxRLWE: A Multi-level
Approximate Ring-LWE Co-processor for
Lightweight IoT Applications," in IEEE Internet of
Things Journal, vol. 9, no. 13, pp. 10492-10501.

[3] T. Shimada and M. Ikeda, "High-Throughput
Polynomial Multiplier Architecture for Lattice-
Based Cryptography," in Proc. 2021 IEEE
International Symposium on Circuits and Systems
(ISCAS), 2021, pp. 1-5.

[4] P. W. Shor, "Algorithms for quantum computation:

discrete logarithms and factoring," in Proceedings
35th Annual Symposium on Foundations of
Computer Science, 1994, pp. 124-134.

[5] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper,
Q. Dang, J. Kelsey, Y.-K. Liu, C. Miller, D. Moody,
R. Peralta et al., “Status report on the second round
of the nist post-quantum cryptography
standardization process,” US Department of
Commerce, National Institute of Standards and
Technology, 2020.

[6] D. Micciancio, and O. Regev. "Lattice-based
cryptography," in Post-quantum cryptography.
Springer, Berlin, Heidelberg, 2009, pp. 147-191.

[7] R. Overbeck, and N. Sendrier. "Code-based
cryptography," in Post-quantum cryptography.
Springer, Berlin, Heidelberg, 2009, pp. 95-145.

[8] J. Ding, and B.Y. Yang. "Multivariate public key
cryptography," in Post-quantum cryptography.
Springer, Berlin, Heidelberg, 2009, pp. 193-241.

[9] A. Faz-Hernández, J. López, E. Ochoa-Jiménez and
F. Rodríguez-Henríquez, "A Faster Software
Implementation of the Supersingular Isogeny
Diffie-Hellman Key Exchange Protocol," in IEEE
Transactions on Computers, vol. 67, no. 11, pp.
1622-1636, 1 Nov. 2018.

[10] M. Mozaffari-Kermani and R. Azarderakhsh,
"Reliable hash trees for post-quantum stateless
cryptographic hash-based signatures," in Proc.
2015 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS), 2015, pp. 103-108.

[11] Y. Zhu et al., "LWRpro: An Energy-Efficient
Configurable Crypto-Processor for Module-LWR,"
in IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 68, no. 3, pp. 1146-1159,
March 2021.

[12] N. Zhang et al., "NTTU: An Area-Efficient Low-
Power NTT-Uncoupled Architecture for NTT-
Based Multiplication," in IEEE Transactions on
Computers, vol. 69, no. 4, pp. 520-533, 1 April
2020.

[13] P. Martins, L. Sousa, and A. Mariano. "A Survey
on Fully Homomorphic Encryption: An
Engineering Perspective," ACM Comput. Surv.,
vol. 50, no. 6, pp. 1-33, Nov. 2018.

[14] B. Koziel, R. Azarderakhsh and M. M. Kermani,
"A High-Performance and Scalable Hardware

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 473

Architecture for Isogeny-Based Cryptography," in
IEEE Transactions on Computers, vol. 67, no. 11,
pp. 1594-1609, 1 Nov. 2018.

[15] S. Heyse, and T. Güneysu. "Towards one cycle per
bit asymmetric encryption: Code-based
cryptography on reconfigurable hardware," in Proc.
International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, Berlin,
Heidelberg, 2012.

[16] T. Oder, T. Güneysu, F. Valencia, A. Khalid, M.
O'Neill and F. Regazzoni, "Lattice-based
cryptography: From reconfigurable hardware to
ASIC," in Proc. 2016 International Symposium on
Integrated Circuits (ISIC), 2016, pp. 1-4.

[17] J. Xie, K. Basu, K. Gaj and U. Guin, "Special
Session: The Recent Advance in Hardware
Implementation of Post-Quantum Cryptography,"
in Proc. 2020 IEEE 38th VLSI Test Symposium
(VTS), 2020, pp. 1-10.

[18] P. Duong-Ngoc and H. Lee, "Configurable Mixed-
Radix Number Theoretic Transform Architecture
for Lattice-Based Cryptography," in IEEE Access,
vol. 10, pp. 12732-12741, 2022.

[19] L. Ducas, and A. Durmus. "Ring-LWE in
polynomial rings," in Proc. International Workshop
on Public Key Cryptography. Springer, Berlin,
Heidelberg, 2012.

[20] K. Yao, D. -E. -S. Kundi, C. Wang, M. O’Neill and
W. Liu, "Towards CRYSTALS-Kyber: A M-LWE
Cryptoprocessor with Area-Time Trade-Off," in
Proc. 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), 2021, pp. 1-5.

[21] T. N. Tan, Y. Hyun, J. Kim, D. Choi and H. Lee,
"Ring-LWE Based Face Encryption and
Decryption System on a GPU," in Proc. 2019
International SoC Design Conference (ISOCC),
2019, pp. 15-16.

[22] C. Du and G. Bai, "Towards efficient polynomial
multiplication for lattice-based cryptography," in
Proc. 2016 IEEE International Symposium on
Circuits and Systems (ISCAS), 2016, pp. 1178-
1181.

[23] S. S. Roy, et al., "Compact ring-LWE
cryptoprocessor," in Proc. International workshop
on cryptographic hardware and embedded systems.
Springer, Berlin, Heidelberg, 2014.

[24] M. Garrido, "A survey on pipelined FFT hardware

architectures," Journal of Signal Processing
Systems, 2021, pp. 1-20.

[25] D. Harvey, "Faster arithmetic for number-theoretic
transforms," Journal of Symbolic Computation, vol.
60, pp. 113-119, 2014.

[26] C. P. Rentería-Mejía and J. Velasco-Medina,
"Hardware design of an NTT-based polynomial
multiplier," in Proc. 2014 IX Southern Conference
on Programmable Logic (SPL), 2014, pp. 1-5.

[27] T. Nguyen Tan, T. Thi Bao Nguyen, and H. Lee,
"High Efficiency Ring-LWE Cryptoprocessor
Using Shared Arithmetic Components," MDPI
Electronics vol. 9, no. 7, pp. 1-12, 2020.

[28] C. P. Rentería-Mejía and J. Velasco-Medina,
"High-Throughput Ring-LWE Cryptoprocessors,"
in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 8, pp.
2332-2345, Aug. 2017.

[29] S. Jumde, R. N. Mandavgane, and D. M. Khatri.
"Review of parallel polynomial multiplier based on
FFT using Indian Vedic mathematics,"
International Journal of Computer Applications, vol.
111, no. 17, pp. 10-13, 2015.

[30] V. Lyubashevsky, C. Peikert, and O. Regev, "On
ideal lattices and learning with errors over rings,"
in Proc. Annual international conference on the
theory and applications of cryptographic techniques.
Springer, Berlin, Heidelberg, 2010.

[31] J. W. Bos, C. Costello, M. Naehrig and D. Stebila,
"Post-Quantum Key Exchange for the TLS
Protocol from the Ring Learning with Errors
Problem," in Proc. 2015 IEEE Symposium on
Security and Privacy, 2015, pp. 553-570.

[32] A. Langlois, and D. Stehlé, "Worst-case to average-
case reductions for module lattices," Designs,
Codes and Cryptography, vol. 75, no. 3, pp. 565-
599, 2015.

[33] M. Abdalla, F. Benhamouda, and D. Pointcheval,
"Public-key encryption indistinguishable under
plaintext-checkable attacks," IET Information
Security, vol. 10, no. 6, pp. 288-303, 2016.

[34] P. Longa, and M. Naehrig. "Speeding up the
number theoretic transform for faster ideal lattice-
based cryptography," In Proc. International
Conference on Cryptology and Network Security.
Springer, Cham, 2016.

[35] M. Garrido, et al. "Hardware architectures for the

474 SOYEON CHOI et al : EFFICIENT PARTIALLY-PARALLEL NTT PROCESSOR FOR LATTICE-BASED POST-QUANTUM …

fast Fourier transform," Handbook of signal
processing systems. Springer, Cham, 2019, pp.
613-647.

[36] F. Winkler, “Polynomial algorithms in computer
algebra,” Springer Science & Business Media,
1996.

[37] D. D. Chen et al., "High-Speed Polynomial
Multiplication Architecture for Ring-LWE and
SHE Cryptosystems," in IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, no.
1, pp. 157-166, Jan. 2015.

[38] Z. Cao, and X. Wu, "An improvement of the
Barrett modular reduction algorithm," International
Journal of Computer Mathematics, vol. 91, no. 9,
2014, pp. 1874-1879.

[39] Z. Liu, et al., "Efficient Ring-LWE encryption on
8-bit AVR processors," In Proc. International
Workshop on Cryptographic Hardware and
Embedded Systems. Springer, Berlin, Heidelberg,
2015.

Soyeon Choi received B.S. degree in
electronics engineering from
Chungnam National University,
Daejeon, South Korea, in 2018,
where she is currently working
toward the Unified Master and Ph.D.
degree. Her main interests are VLSI

for error correction codes, embedded system, and FPGA
reverse engineering.

Yerin Shin received the B.S., and
M.S. degrees in electronics engi-
neering from Chungnam National
University, Daejeon, South Korea, in
2016 and 2022, respectively. Her
research interests include VLSI for
error correction codes, and SoC for

embedded system. Since 2022, she has been with the
Department of TV/Commercial, LX Semicon, Daejeon,
where she is currently a Researcher.

Kiho Lim received his M.S. and
Ph.D. degrees in Computer Science
from the University of Kentucky in
2012 and 2016, respectively.
Currently, he is an Assistant
Professor in the Department of
Computer Science at William

Paterson University of New Jersey, USA. Prior to joining
WPU, he as an assistant professor with the Department
of Computer Science at the University of South Dakota
from 2016 to 2019. His research interests include
cybersecurity, network security, vehicular networks,
wireless communications, fog/edge computing, and IoT.
He is currently the director of Cybersecurity Lab at WPU.

Hoyoung Yoo received the B.S.
degree in electrical and electronics
engineering from Yonsei University,
Seoul, South Korea, in 2010, and the
M.S., and Ph.D. degrees in electrical
engineering from Korea Advanced
Institute of Science and Technology

(KAIST), Daejeon, South Korea, in 2012 and 2016,
respectively. Since 2016, he has been with the
Department of Electronics Engineering, Chungnam
National University (CNU), Daejeon, where he is
currently an Associate Professor. Prior to joining CNU,
in 2016, he was with Samsung Electronics, Hwasung,
South Korea, where he was involved in the research of
nonbinary LDPC decoders for NAND flash memories.
His current research interests include algorithms and
architectures for errorcorrecting codes, FPGA reverse
engineering, GNSS communication, and 5G
communication systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

