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Abstract—This paper presents a partially-parallel 
number theoretic transform (NTT) processor design 
for polynomial multipliers, which is a key component 
of a lattice-based cryptography. Since the data flow of 
NTT is similar to that of FFT, studies have been 
conducted to apply the FFT structure to fit the NTT 
structure. However, the previous architectures suffer 
from high hardware complexity and low throughput. 
Thus, we propose a new partially-parallel design that 
models the data reordering process and derives a 
generalized data reordering circuit. The proposed 
partially parallel design solved the problem of the 
previous architectures. Moreover, it provides imp-
roved performance through efficient data reordering. 
Synthesis results shows that the proposed 8-parallel 
512-point NTT processor achieves 15% to 76% 
improvements in terms of hardware efficiency 
compared to the previous architectures. As a result, 
the proposed NTT processor is a good solution in a 
more diversified lattice-based crypto-processor with 
constrained usage conditions.    
 
Index Terms—Lattice-based cryptography, number 
theoretic transform, polynomial multiplier, post-
quantum crypto-processer  

I. INTRODUCTION 

Encryption for reliable security is one of the most 
important elements in modern communication systems 
[1]. However, the classic encryption techniques face a 
crisis of collapse due to the rapidly developing quantum 
computing technology [2]. It has been proven that 
modern cryptographic algorithms such as Ribest, Shamir 
and Adelman (RSA) and Elliptic Curve Cryptography 
(ECC) can be nullified within a short time [3] by the 
Shor quantum algorithm [4]. Mathematic problems such 
as prime factorization, which take a long time to 
calculate with current computing performance, are no 
longer valid as cryptographic algorithms in quantum 
computers. Therefore, studies on post-quantum 
cryptography (PQC) have been actively conducted 
centered on the National Institute of Standards and 
Technology (NIST), and standardization work has been 
carried out over three rounds since 2016 [5]. The PQC 
standardization work is selecting the final candidate 
based on five basic technologies: lattice-based 
cryptography [6], code-based cryptography [7], multi-
variate-polynomial-based crypto-graphy [8], isogeny-
based cryptography [9], and hash-based cryptography 
[10]. Among them, the lattice-based crypto-system is 
most frequently selected as the final candidate [11] 
because of its high cryptographic efficiency, affordable 
complexity, and fully homomorphic encryption (FHE) 
applicability [12, 13] and is perceived as the candidate 
with the most potential for the NIST standard.   

In step with the PQC algorithm standardization work, 
studies on hardware development have been actively 
conducted [14-18]. The operation that requires the 
longest computation time in lattice-based cryptography is 
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polynomial multiplication [19], so studies to improve 
performance such as processing speed and hardware 
utilization efficiency have been intensively conducted 
centered on polynomial multiplication [20, 21]. Recently, 
many researchers have studied NTT-based polynomial 
multiplication algorithms and hardware [22, 23]. 
Whereas Fast Fourier Transform (FFT) carries out 
operations on a complex plane, Number Theoretic 
Transform (NTT) performs operations of values on a 
finite ring rather than complex numbers based on roots of 
unity. Because the hardware architecture of FFT has been 
studied for more than 50 years, a stably studied FFT 
architecture can be applied to NTT [24, 25]. Similar to 
the fully-parallel architecture of FFT, the fully-parallel 
architecture that maps the dataflow of NTT directly to 
hardware is intuitive and simple. However, identically to 
the fully-parallel architecture of the FFT [24], the fully-
parallel architecture of the NTT also has a problem that 
hardware complexity increases linearly as the length of 
the NTT increases [26]. To solve this problem, a design 
that provides the partially parallel architecture of NTT 
through a feedback type and a feedforward type was 
proposed in a similar method applied in FFT [26-29]. 
Since the partially-parallel architecture of the NTT 
provides the desired timing as a delay element of the 
feedback loop, single-path delay feedback (SDF) [26] 
and multi-path delay feedback (MDF) [27] have been 
proposed as structures to support the partially-parallel 
architecture. In addition, a single-path delay commutator 
(SDC) [28] and multi-path delay commutator (MDC) 
[29] that provide the desired timing through an additional 
reordering circuit have been proposed. However, since 
SDF [26] and SDC [28] have low throughput due to 
serial operation, there are restrictions in real encryption 
hardware implementation, and in the case of MDF [27] 
and MDC [29], low hardware usage efficiency has been 
raised as a problem. In this paper, the data reordering 
sequences between processing elements by step are 
analyzed to propose an efficient partially-parallel NTT 
processor structure that can be applied to various parallel 
factors. The main contributions of this paper are 
summarized as follows: 

1) The proposed design technique concentrates on the 
data rearrangement process, which provides matrix 
representation and draws a reordering circuit to 
present a comprehensive implementation method. 

2) Since the proposed structure can be applied to any 
parallel factor, a hardware structure optimized to fit 
the given design constraints can be provided. 

3) The proposed structure is a partially parallel 
architecture that solves the problem of 
parallelization restriction by the high radix of the 
MDC design [29] and the problem of huge 
hardware complexity of the MDF design [27]. 

4) The proposed structure achieves 100% hardware 
utilization efficiency to provide the best 
performance in terms of hardware complexity and 
throughput. 

 
The rest of the paper is organized as follows. In the 

second chapter, the theoretical background necessary for 
this study is identified. Contents regarding NTT-based 
polynomial multiplication algorithms and general NTT 
processors are included. In the third chapter, the previous 
partially-parallel NTT processor architecture is examined, 
and its problems are analyzed. In the fourth chapter, a 
design technique for a new partially parallel architecture 
is proposed, and then in the fifth chapter, the 
performance of the NTT processor designed by applying 
the relevant technique is evaluated. Finally, in the last 
chapter, the conclusion of this study is presented. 

II. BACKGROUND 

1. NTT Polynomial Multiplication 
 
Lattice-based cryptosystems carry out the encryption 

and decryption of problems such as Ring-Learning with 
Error (Ring-LWE) [30, 31] and Module Learning with 
Error (Module-LWE) [32] by performing polynomial 
addition, multiplication, and modulo operations on a 
finite ring. Because polynomial multiplication has higher 
complexity compared to other arithmetic operations, it is 
essential to implement efficient polynomial 
multiplication for lattice-based cryptographic hardware. 
The finite ring is defined as [ ] / ( )q qR x f x= Z , where 

1(mod 2 )q N≡ is a prime number and ( ) 1Nf x x= + is 
an irreducible polynomial of degree N [33]. Any two 
polynomials ( )a x , ( )b x on the finite ring Rq can be 
expressed as 
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A polynomial ( )c x of length 2 1N − can be obtained 

by multiplying two polynomials of length N, and the 
coefficient of ( )c x  can be calculated with (2). 
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Since (2) representing polynomial multiplication is the 

same as the operation to obtain the discrete convolution 
( ) ( )* ( )c x a x b x= , polynomial multiplication can be 

calculated with discrete convolution. However, the 
convolution operation in (2) has a large operation 
quantity of 2( )O N , so it is generally processed as 
multiplication through domain transformation. The 
coefficient of the polynomial can be changed into the 
frequency domain using Discrete Fourier Transform 
(DFT). Instead of the time domain convolution operation, 
pointwise multiplications for coefficients of ( )a x and 

( )b x  are carried out, in the frequency domain. Finally, 
inverse DFT (IDFT) of ( )c x  in the frequency domain is 
performed to obtain the ( )c x of the time domain.  
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In this case, the lengths of ( )a x and ( )b x must be 

adjusted to 2 1N − , which is the length of ( )c x , for 
DFT and IDFT, and zero-padding is necessary [23].  

However, the DFT and IDFT also have an operation 
quantity of 2( )O N . The FFT algorithm, well known as a 
method to transform the domain quickly by reducing the 
operation quantity, is applied. The DFT of (4) can reduce 
the operation quantity to ( log )O N N  as shown in (5) 
through the divide-and-conquer method by using the 
periodic and conjugate properties of ij

NW . 
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Furthermore, a complex number-based operation for 

FFT can be replaced with a integer number-based 
operation by employing NTT while maintaining the 

properties of FFT [22, 23]. As shown in Fig. 1(a), in FFT, 
2 /j N

NW e π=  is defined as a primitive root, and as shown 

in Fig. 1(b), in NTT, mod 1NW q =  is defined as a 
primitive root [34]. NTT and inverse NTT (INTT) are 
expressed with the following (6) and (7).  
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Accordingly, (3) representing the DFT-based 

polynomial multiplication operation [35] can be 
expressed as (8) representing NTT-based polynomial 
multiplication.  
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(a) FFT for N = 16 
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(b) NTT for N = 16 

Fig. 1. Primitive root for N = 16. 
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Fig. 2. Overall structure for NTT polynomial multiplication. 
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Finally, a negative wrapped convolution that 
efficiently removes the zero-padding that occurs in the 
NTT and INTT processes of (8) was proposed [36]. 
According to [36], the zero-padding process that may 
occur during NTT-based polynomial multiplication can 
be omitted by multiplying the coefficients of the two 
polynomials by ψ that satisfies modW qψ ≡ . The two 
polynomial coefficients multiplied by ψ are expressed 

as 1 1
0 1 1'( ) n n

na x a a x a xψ ψ − −
−= + + +  and 0'( )b x b= +  

1 1
1 1

n n
nb x b xψ ψ − −
−+ + . As a result, (8) can be expressed 

 

 1( ) ( ( '( )) ( '( )))c x INTT NTT a x NTT b xψ−= . (9) 
 
In conclusion, polynomial multiplication using NTT 

can be performed reducing the computational complexity 
from 2( )O N  to ( log )O N N through integer operation 
instead of complex numbers.  

 

2. General NTT Processor 
 
Fig. 2 shows a typical polynomial multiplier 

architecture that implements (9), where DIF and DIT 
represent decimation-in-frequency (DIF) and decimation-
in-time (DIT), respectively [35]. If the same decimation 

is used for all NTTs and INTTs, it is inevitable to add a 
bit-reversal circuit to every NTT or INTT [35]. In order 
to completely remove the added bit-reversal circuit, the 
DIF structure, in which the output is bit-reversal 
converted when the inputs are sequential, is generally 
applied to the front NTT, and the DIT structure, in which 
bit-reversal inputs are sequentially converted and output, 
is applied to the rear INTT as shown in Fig. 2. Since the 
DIT and DIF algorithms are structurally symmetric [35], 
and one of the NTT and INTT structures can be easily 
derived by applying the other structure, this paper will 
mainly explain the structure of the DIF NTT processor. 

 
A. Fully-parallel Architecture 
Fig. 3 shows the DIF NTT processor of a fully-parallel 

architecture with 16N = , 17q= , and 3NW = . NTT 
for 16N =  points is performed over n steps, and N/2 
processing elements (PEs) are required for each step, 
where n is 2log N . In order to perform the NTT 
operation in (6), PE consists of one radix-2 butterfly unit, 
three modular reduction units (MR), and one multiplier. 
The basic PE is similar to the structure of the FFT, but in 
accordance with the characteristics of the lattice-based 
cryptoprocessor that must be operated on Rq, modular 
reduction is additionally required in the transformation 
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Fig. 3. Fully-parallel architecture for N = 16. 
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 22, NO. 6, DECEMBER, 2022 463 

 

process over n steps. In this paper, among various 
implementations including Barrett and Montgomery 
modular reduction [37-39], [39] is used to limit the result 
of each operation to 2log 4N = bits.  

As shown in Fig. 3, PE operation is performed at every 
s stage (1 ≤ s ≤ n) and the PE of the next stage is 
performed after rearranging the data. According to [24], 
data reordering performs rearrangement while satisfying 
the following properties.  

 

NTT pair property: pairs of data processed 
simultaneously in the PEs at stage s differ in n sb −  for 
any N-point NTT with 2logn N=  stages. 

 

For instance, the PEs begin by operating on pairs of 
data with indexes (0,8), (1,9), (2,10), (3,11), and so forth 
after the first stage. By converting these indices to binary, 
we obtain (0000,1000), (0001,1001), (0010,1010), and 
(0011,1011). Comparing the indices in each pair reveals 
that they are identical except for the most significant bit, 

3 4 1b b −= . This is true for all the pairs of indices at stage 
1. By repeating the analysis for stage 2 and 3, it is clear 
that the indices of pairs of data processed by the PEs 
differ only in 2b and 1b , respectively. As a result, we 
can conclude that the NTT architecture is correct only 
when the data pairs input during the same clock period in 
all PEs differ in the index bits n sb − . This will serve as 
the foundation for the following explanations of the other 
structures.  

 
B. Partially-parallel Architecture 
As can be observed in Fig. 3, since the fully-parallel 

architecture simultaneously computes N data through a 
total of 2( / 2) logN N  PEs and reordering networks by 
stage, it has high throughput of N points per clock cycle. 
However, in terms of hardware complexity, it has a 
severe disadvantage that the required number of PEs 
increases linearly as N increases. To alleviate the high 
hardware complexity of the fully-parallel architecture, a 
partially- parallel architecture that simultaneously 
processes 2 pP =  data according to parallel factor P has 
emerged. Fig. 4 shows the general structure of the 
partially-parallel NTT. The partially-parallel structure is 
composed of n stages connected in series with data 
flowing from stage 1 to stage n. Since each stage 
contains P inputs and P outputs, N data points are 

subdivided into N / P number of P points and thus the 
throughput becomes P data per clock cycle. Note that 
each stage s of the architecture performs all calculations 
associated with one stage of the NTT algorithm. 

To convert the fully-parallel architecture shown in Fig. 
3 to the partially-parallel architecture shown in Fig. 4, 
data rearrangement must be considered. The output pair 
with the natural order of s stage is rearranged while 
satisfying the pair property in the next s + 1 stage. The 
partially-parallel architecture is largely divided into a 
feedback type [26, 27] and a feedforward type [28, 29] 
according to the data rearrangement processing method. 
First, the feedback type shown in Fig. 5(a) proceeds with 
data reordering using a feedback loop. In this case, some 
output of butterfly unit (BF) is fed back as the delay 
element at the same stage through the feedback loop, so 
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Fig. 4. General partially-parallel architecture. 
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Fig. 5. Feedback and feedforward architecture. 
 

Table 1. The previous architectures. 

Type Architecture Parallelism 
SDF Serial 

Feedback 
MDF Partially-parallel 
SDC Serial 

Feedforward 
MDC Partially-parallel 
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the operation of the input pair where a difference of n sb −  
occurs in the next stage. On the other hand, in the 
feedforward type shown in Fig. 5(b), the data processed 
from the PE of each stage uses a separate reordering 
circuit to match the input pair with a difference of n sb −  
in the next stage. 

III. PREVIOUS WORKS 

The previous NTT architectures are classified in Table 
1. The table denotes feedback and feedforward types [26-
29]. First, the feedback type satisfies the NTT pair 
property by providing the desired timing with the delay 
elements via the feedback loop. They are classified as 
single-path delay feedback (SDF) [26] or multi-path 
delay feedback (MDF) [27] based on their serial or 
parallel processing configurations. Second, the 
feedforward type accomplishes the NTT pair property 
with an additional reordering circuit following PE. They 
are classified as single-path delay commutator (SDC) 
[28] or multi-path delay commutator (MDC) [29], based 
on their serial or parallel processing capabilities.  

 

1. Single-path Delay Feedback (SDF) Design 
 

Fig. 6 shows the 16N =  point SDF design, which is 
a representative design based on feedback. The SDF 
design has serial data flow because it uses a single path 
and satisfies the NTT pair property using the delay 
element of the feedback loop [26]. SDF receives data at 
each stage in the natural order of the index from 0 to 15. 
For serial data flow, pairs of data that differ by n sb −  
arrive with a difference of 2n s−  clock cycles according 
to the natural order. At each stage, a buffer of length 

2n sL −=  is used to store these pairs of data concurrently. 
Thus, the buffer’s output is calculated simultaneously 
with the stage’s input in the PE. Following that, one of 

the butterfly’s outputs is sent to the multiplier, while the 
other is placed in the buffer. As illustrated in Fig. 6, each 
stage consists of one BF, one multiplier, three MRs, and a 
FIFO with a length of 2n sL −= . When all hardware 
resources are added for all stage {1, , }s n= , 2log N  
BFs, 2log N  multipliers, 23log N  MRs, and 1N −  
FIFO are required in total. Compared to the fully-parallel 
architecture shown in Fig. 3, the SDF design [26] can 
overwhelmingly improve the hardware complexity 
problem because it uses a single path. However, it has the 
problem that the hardware throughput is processing one 
data per clock due to serial data flow, and hardware 
utilization is reduced to 50% due to the feedback loop. 

 
2. Multi-path Delay Feedback (MDF) Design 

 
The MDF design [27] is the parallel version of the 

SDF design [26]. Fig. 7 shows a 16-point 4-parallel MDF 
design, which consists of the first independent serial PEs 
and the second combining parallel PEs. Let us compare 
the SDF in Fig. 6 and MDF in Fig. 7. Whereas data in the 
SDF [26] is processed in series in natural order from stage 
1 to n = 4, MDF processes P data flow independently 
through the first serial PEs and combines P data flow 
through the second parallel PEs [27]. The first serial PEs 
are the same as the original SDF [26] except for the fact 
that the length of the buffers in MDF [27] is divided by P 
with respect to those in the SDF [26]. Since each 
independent serial part provides parallel streams that differ 
in the bit n sb − , the remaining parallel part simply 
combines those parallel streams with shuffling circuits. 
The general P-parallel MDF [27] uses 2log ( / )P N P  

2( / 2) lo ,g BFsP P+  2 2log ( / ) ( / 2) logP N P P P+  

multi-pliers, 2 23( log ( / ) ( / 2) log )P N P P P+  MRs, and 
N P−  FIFO. Consequently, the MDF design [27] can 
parallelize the SDF design [26] by 2 pP =  to improve 
the throughput by P times. However, it uses 
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Fig. 6. The SDF architecture for N = 16. 
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approximately P times more hardware than the SDF 
design [26], and like the SDF design [26], it fails to 
achieve full hardware utilization.  

 
3. Single-path Delay Commutator (SDC) Design 

 
In comparison to feedback designs [26, 27], 

feedforward designs [28, 29] incorporate additional 
reordering circuitry to ensure that the NTT pair property 
is satisfied. Fig. 8 illustrates a 16-point SDC for serial 
data processing. Despite the fact that the SDC processes 
serial data [28], it is based on the 2-parallel MDC 
depicted in Fig. 9(a). Let us begin with the 2-parallel 
MDC [29]. In 2-parallel MDC [29], it is assumed that 
input data differentiated in bit arrive, but the data order is 

not consistent between stages, necessitating the 
participation of shuffling circuits to reorder the data as 
shown in Fig. 9(a). The reordering circuits consist of 
upper and lower paths, each of which demands buffers 
and multiplexers to satisfy the NTT pair property. First, 
the lower path is delayed using the buffers, and then both 
upper and lower sets of data are swapped using 
multiplexers. Lastly, the upper path is delayed using 
buffers, resulting in an aligned data pair.  

The SDC in Fig. 8 receives input data in series. The 
only difference between SDC [28] and 2-parallel MDC 
[29] is in the data input and output. As shown in Fig. 8, 
the first half of the data is routed through the input buffer, 
while the second half is connected to the SDC’s lower 
input [28]. Finally, the output is serialized once again. 
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Fig. 7. The MDF architecture for N = 16 and P = 4. 
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Due to data parallelization, SDC [28] is only operational 
50% of the time, with the remaining 50% used to receive 
and produce data. The general SDC employs a total of 

2log N  BFs, 2log N multipliers, 23log N  MRs, and 
2( 1)N −  FIFO in terms of hardware resources. 

 
4. Multi-path Delay Commutator (MDC) Design 

 
The MDC design has a parallel design with a higher 

parallel factor because it uses high-radix for radix-2 
based 2-parallel MDC [29]. Fig. 9(a) and (b) show the 2-
parallel MDC and 4-parallel MDC designs, respectively. 
The 2-parallel MDC [29] has the same structure as the 
SDC design [28] after removing additional input/output 
circuits required for serial processing. Fig. 9(a) processes 
two data per one PE and processes two data per clock 
based on radix-2, and one stage of the 2-parallel MDC 
shown in Fig. 9(a) carries out the operation assigned to 
one stage of the fully-parallel architecture [26]. On the 
other hand, Fig. 9(b) processes four data per one PE and 
four data per clock based on radix-4. One stage of the 4-
parallel MDC in Fig. 9(b) performs the operations 
assigned to two successive stages of the 2-parallel MDC. 

A typical P-parallel MDC design [29] requires log pP N  

BFs, ( 1) log pP N− multipliers, 2( 1) log pP N−  MRs, 

and N P−  FIFO. 

In conclusion, the P-parallel MDC design [29] 
achieves a throughput improvement by P times by 
changing the 2-radix structure of the 2-parallel MDC 
design to the P-radix structure. Due to the limit on the 
use of the trivial multiplier, the high radix application of 
the NTT does not significantly improve performance. In 
addition, it has the disadvantage that hardware utilization 
is limited by P times due to the input/output delay circuit. 

IV. PROPOSED PARTIALLY-PARALLEL NTT 

DESIGN 

Although the MDF design [27] and the MDC design 
[29] succeeded in achieving high throughput by 
converting the SDF design [26] and the SDC design [28] 
into a parallel architecture, respectively, the resultant 
increase in hardware complexity and decrease in 
hardware utilization are among the problems that must be 
solved. Therefore, we propose a new partially-parallel 
NTT architecture that can improve hardware 
performance by combining the advantages of MDF [27] 
and MDC design [29]. Similar to the overall structure of 
MDF [27], the proposed partially-parallel NTT 
architecture composes many independent serial structures 
on the front, and a parallel structure combining them on 
the rear. For the technique to design a partially-parallel 
NTT, the reordering structure that satisfies the NTT pair 
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Fig. 9. The MDC architecture for N = 16 and P = 2 and 4. 
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property is mainly analyzed and a partially-parallel NTT 
structure is presented based on the analysis. In this paper, 
the 4-parallel structure for 16-point NTT is used as an 
example without loss of generality. The advantages of the 
proposed partially-parallel NTT design are emphasized 
through direct comparison with 4-parallel MDF and 
MDC. Finally, the structures of parallel factors 4, 8, and 
16 are presented for the 512-point NTT structure to 
provide a practical example and show that it can be 
easily applied to various parallel factors.  

 

1. Proposed Partially-parallel NTT Algorithm 
 
The proposed new partially-parallel NTT design begins 

with analyzing the data rearrangement processes to 
transform them to fit the given parallel factors. Fig. 10 
shows the rearrangement processes extracted from the 16-
point fully-parallel architecture in Fig. 3. The input of the 
reordering circuit has a pair that differs only in n sb −  bits 
at stage s and satisfies the pair property, and the output of 
the reordering circuit are described in natural order. For 
example, in the fully-parallel architecture for N = 16 points 
in Fig. 3, the NTT algorithm is performed from stage 1 to 
4, in reordering 1 shown in Fig. 10(a), there is a difference 
in 4 1 3b b− = in each pair, and in reordering 2 shown in Fig. 
10(b), there is a difference in the 4 2 2b b− =  bit of each 

pair. Similarly, in reordering 3 shown in Fig. 10(c), it can 
be seen that 1b of the pair are different. In the previous 
NTT structure including SDF [26], MDF [27], SDC [28], 
and MDC [29], it can be seen that the NTT pair property is 
satisfied for all data pairs in the NTT processing process 
regardless of serial and parallel data flow, feedback and 
feedforward types [26-29]. 

In order to derive the proposed partially-parallel 
architecture based on Fig. 10, a new scheduling task 
should be performed that transforms each of 1N×  
matrices into ( / )P N P× matrices. Fig. 10 and 11 
represent 16 1×  matrices and 4 4×  matrices for 
reordering, respectively. For matrix representation, the 
column of the matrix means one clock cycle and the row 
means the number of data processed per one clock cycle. 
Note that P row determines the number of PEs as / 2P  
to process P data in parallel. The ( / )P N P× matrix 
represents P data in one clock for /N P  clock cycles to 
process the entire N data. Whereas the 16 1×  matrices 
shown in Fig. 10 rearranges sixteen data at a single clock 
in a fully-parallel manner, the 4 4×  matrices shown in 
Fig. 11 processes four data for four clock cycles in a 
partially-parallel manner. As with the transformed 16 1×  
matrix where the NTT pair property is maintained, the 
NTT pair property is also maintained in all 4 4×  
matrices.  
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Fig. 10. Reordering analysis of (a) reordering 1; (b) reordering 2; (c) reordering 3. 
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More importantly, through transformation into 4 4×  
matrices, the data pair that needs swapping can be 
identified out of the entire 16 data. The pairs that require 
swapping are highlighted in Fig. 11 and summarized as 
follows: 

 
Stage 1: (1,8), (3,10), (5,12), (7,14)  
Stage 2: (1,4), (3,6), (9,12), (11,14)  
Stage 3: (1,2), (5,6), (9,10), (13,14)  
 
As shown in Fig. 11, the swapping pairs in stages 1 

and 2 require delay factors as much as 2 and 1, and the 
swapping pairs in stage 3 does not require any delay.  

In order to satisfy the NTT pair property by changing 
the 16 1× matrix of the fully-parallel architecture to the 
4 4× matrix of the partially-parallel architecture, the 
design of a reordering circuit that performs swapping to 
an appropriate clock is carefully designed. In this case, 
the required hardware structure varies depending on 
whether there is a delay between swapping data and 
inter/intra-PE. To explain in more detail, the reordering 
circuit used in SDC [28] and MDC [29] is suitable in 
cases where delay is required, as with stage 1 and stage 2, 
and swapping occurs in intra-PE. Upper and lower paths 

of reordering circuits can be exchanged with the desired 
delay difference through the FIFO and multiplexers of 
each path. Additionally, as with stage 3, when swapping 
occurs between inter-PEs without requiring delay, it is 
easy to implement simple hardwiring similar to the last 
combining circuitry of MDF [27]. Since the replacement 
data pair already occurs in the same clock, data 
rearrangement can be completed with a simple 
interconnection without delay. 

 
2. Proposed Partially-parallel NTT Structure 

 
With the matrix transformation, analysis, and 

derivation of a rearrangement circuit, the finally 
proposed 4-parallel structure for 16-point NTT is as 
shown in Fig. 12. Basically, since P data are processed in 
parallel per clock cycle, each stage consists of / 2P  
PEs, and a rearrangement circuit depicted in Fig. 11 was 
added between each stage to operate to fit the matrix 
operation. Between stage 1 and stage 2, a feedforward 
type reordering circuit was built with delay times 2 and 1, 
and in stage 3, they were interconnected with hardwiring. 
In conclusion, two independent MDC designs [29] 
operate in 2-parallel in the front part of the proposed 
partially-parallel NTT architecture, and parallel 
structures similar to MDF design [27] combine 
independent streams in the rear part. In other words, the 
overall structure is similar to the MDF design in Fig. 7, 
but the internal structure is composed of the 2-parallel 
MDC design in Fig. 9, not the feedback-based SDF in 
Fig. 6. To sum up, the proposed NTT processor requires 

2( / 2) log BFs,P N  2( / 2) logP N  multipliers, 

23( / 2) logP N MRs, and N P− FIFO for partially-
parallel P. The proposed partially-parallel architecture 
can achieve 100% hardware utilization because it does 
not internally include the feedback loop that MDF [27] 
has and minimizes the waste of the delay element of the 
reordering circuit due to the high radix of MDC [29]. In 
conclusion, it is possible to provide higher throughput 
compared to SDF [26] and SDC [28] while absorbing all 
the advantages of MDF [27] and MDC [29]. 
Consequently, the design method for the proposed 
partially-parallel architecture can be described as 
follows:  

1) Create 1n−  pieces of 1N× matrices by 
reordering for a fully-parallel architecture 
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Fig. 11. 4×4 matrix representation for (a) reordering 1; (b)
reordering 2; (c) reordering 3. 
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2) Transform the 1N× matrices into 1n−  pieces of 
( / )P N P× matrices by stage for a partially-parallel 

architecture 
3) Check swapping data by stage and configure the 

reordering circuit 
4) Place / 2P  PEs for each stage and interconnect 

them with the reordering circuit 
 
Fig. 13 shows practical examples of N = 512, q = 

12,289, W = 3 using the design method above. While 
changing the parallel factor to 4, 8, and 16, it can be seen 
that the above systematic design method is applied 
regardless of the NTT length and parallel factor. Note 
that if the parallel factor P is 2, the proposed partially-
parallel structure will become a 2-parallel MDC [29], and 
if the parallel factor P is equal to the NTT length N, the 
proposed partially-parallel architecture will become a 
fully-parallel architecture [26]. It is important to note that 
since the proposed partially-parallel architecture 
proposes a comprehensive structure and can be applied to 
any P, it is possible to implement the most efficient NTT 
processor under the constraints by selecting a P suitable 
for the design environment. 

V. EXPERIMENTAL RESULTS 

Table 2 shows a quantitative comparison between the 
proposed partially parallel NTT processor structure and 
the previous structures in terms of hardware resources, 
latency, throughput, and utilization. Note that utilization 
is defined as the ratio of the number of clocks during 
which PE conducts valid and effective operations to the 
total number of running clocks in order to demonstrate 
the efficiency of the hardware in addition to the typical 
hardware performance metrics. Representative hardware 
performance metrics were compared for the proposed 

NTT processor and the previous fully parallel 
architecture, serial architectures, and partially parallel 
architectures. In this case, N represents the length of the 
NTT and P represents a parallel factor. As shown in Fig. 
3, the fully parallel architecture is intuitive and can 
support high throughput by processing N data per clock 
[26]. However, it has a problem that hardware 
complexity increases linearly along with the increase in 
the NTT length, and in fact a high throughput of 
processing N data per clock cycle is not required in a 
realistic system. Next, the SDF [26] in Fig. 6 and SDC 
[28] in Fig. 8, which are serial structures, satisfy the NTT 
pair property through the feedback type and feedforward 
type, respectively, and can serialize a fully-parallel 
architecture. Although they can reduce hardware 
including large amounts of butterflies, multipliers, 
modular reductions, and memories compared to the fully-
parallel architecture [26], they provide a low throughput 
of processing one data per clock. Finally, the MDF [27] 
in Fig. 7 and MDC [29] in Fig. 9 designs can partially 
parallelize SDF [26] and SDC [28] to provide affordable 
hardware complexity while providing realistic 
throughput. However, they waste delays due to the 
inefficient data rearrangement circuit or impose 
limitations on the use of high radix structures, resulting 
in low level of hardware utilization. The proposed 
partially-parallel NTT design in Fig. 12 solves the 
problem by utilizing the advantages of both designs. Due 
to the efficient reordering circuit, the proposed partially-
parallel design has the lowest hardware complexity 
quantitatively among partially-parallel structures 
regardless of NTT length N and parallel factor P. 
Moreover, Table 3 provides a numerical comparison by 
substituting the length N for 512 and the parallel factor P 
for 8. Through Table 2 and 3, the advantages of each 
architecture including fully-parallel, serial, and partially-
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Fig. 12. The proposed partially-parallel design for N = 16 and P = 4. 
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parallel architectures can be clearly confirmed. Moreover, 
it can also be confirmed that the proposed partially-
parallel design always has low hardware complexity, 
short latency, and high hardware utilization among 
partially-parallel architectures. 

Finally, to bring a practical comparison, Table 4 
compares the synthesis results for all NTT designs in 
Verilog HDL with 200 MHz operating frequency using a 

CMOS 180 nm process. Without loss of generality, all 
NTT processors were maintained at N = 512, q = 12,289, 
W = 3, and P = 8. The hardware complexity, latency, 
throughput, and hardware efficiency information 
representing the performance of the entire structure were 
indicated. The hardware complexity was defined as the 
number of 2-input NAND gates, and the efficiency 
obtained by dividing the throughput by the complexity 
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Fig. 13. The proposed partially-parallel design for N = 512 and P = 4, 8, and 16. 
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was additionally used to make it easier to understand the 
results of performance improvement of the proposed 
structure. Consequently, it can be seen in the synthesis 
results in Table 4 that the proposed structure shows the 
best efficiency by efficiently implementing the 
rearrangement circuit. In more detail, the proposed 
partially-parallel architecture achieved 15% efficiency 
improvement thanks to the smaller hardware usage 
compared to the fully-parallel architecture [26], and 
achieved efficiency improvements of 66% and 74% 
thanks to the higher throughput compared to the serial 

architectures of SDF [26] and SDC [28], respectively. 
With the improvement of the rearrangement structure 
compared to MDF [27] and MDC [29], which are 
partially parallel architectures, efficiency improvements 
of 43% and 76%, respectively, were achieved. Although 
Table 4 presents the synthesis results only for P = 8, it 
can be inferred that it has the highest efficiency for any P 
according to Table 2. Therefore, the proposed NTT 
design can respond flexibly to the lattice-based post-
quantum cryptosystem that has various design 
requirements. 

Table 2. Comparison on hardware complexity. 

Architecture Fully parallel Serial Partially Parallel (P) 
Design Fully parallel [26] SDF [26] SDC [28] MDF [27] MDC [29] Proposed 

Butterflies 2( / 2)(log )N N  2log N  2log N  
( )

2

2

log ( / )
( / 2) log

P N P
P P+

 2 log pP N  2( / 2)(log )P N  

Multipliers 2( / 2)(log )N N  2log N  2log N  
( )

2

2

log ( / )
( / 2) log

P N P
P P+

 ( 1) log pP N−  2( / 2)(log )P N  

Modular  
reduction 23( / 2)(log )N N 23(log )N  23(log )N  

( )
2

2

3 log ( / )
3( / 2) log
P N P

P P+
 2( 1) log 1pP N− +  23( / 2)(log )P N

Delays - N − 1 2(N − 1) N − P N P−  N − P 

Latency 1 N − 1 N − 1 ( / ) 1N P −  2 / 1N P −  ( / ) 1N P −  

Throughput N 1 1 P P P 

Utilization 100 % 50 % 50 % 50(1 log )N P+ % 100 % 100 % 

 
Table 3. Comparison on hardware complexity for N = 512 

Architecture Fully parallel Serial Partially Parallel (P = 8) 
Design Fully parallel [26] SDF [26] SDC [28] MDF [27] MDC [29] Proposed 

Butterflies 2,304 9 9 60 192 36 
Multipliers 2,304 9 9 60 27 36 
Modular  
reduction 6,912 27 27 180 55 108 

Delays - 511 1,022 504 504 504 
Latency 1 511 511 63 127 63 

Throughput 512 1 1 8 8 8 
Utilization 100 % 50 % 50 % 66 % 100 % 100 % 

 
Table 4. Synthesis result for N = 512 

Architecture Fully parallel Serial Partially Parallel (P = 8) 
Design Fully parallel [26] SDF [26] SDC [28] MDF [27] MDC [29] Proposed 

Gate count 
[#NAND] 39,789K 196K 257K 966K 955K 553K 

Latency 
[ns] 5 2,555 2,555 315 635 315 

Throughput 
[Gbps] 102.4 0.23 0.23 1.62 0.81 1.62 

Efficiency 
[Kbps/#NAND] 2.57 1.02 0.78 1.68 0.84 2.94 
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VI. CONCLUSION   

In this paper, a new partially parallel NTT processor 
architecture applicable to polynomial multiplication was 
proposed to improve the cryptographic processor 
efficiency of lattice-based post-quantum cryptography. 
The proposed structure analyzes the data rearrangement 
processes as matrices derives and a data rearrangement 
circuit and the entire structure using the generalized data 
rearrangement scheduling process. As a result, the 
problems of the high complexity of the previous fully-
parallel architecture [26] and low throughput of the serial 
architecture SDF [26] and SDC [28] designs were solved. 
It provides improved performance in terms of hardware 
complexity and utilization through efficient data 
rearrangement compared to partially parallel MDF [27] 
and MDC [29]. Consequently, the proposed structure 
enables the design of a partially parallel N-point NTT 
processor that is easily optimized even with changes in 
NTT length N and parallel factor P. It can be applied to a 
lattice-based post-quantum crypto-processor for a wider 
variety of devices with a limited use environment. 
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