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Material-Device Simulations of High-Frequency
Performances of n-type MOSFET with GeSn Channel
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Abstract: Recently, GeSn has been identified as a promising candidate for group-IV-driven electronic and photonic
devices owing to its high carrier mobility and indirect-to-direct bandgap transition property. In this work, a compre-
hensive study of primary material characteristics, including electron affinity, bandgap energies at local minimum
valleys, and effective density of states (DOS) of the GeSn alloy, has been conducted as a function of Sn fraction
and in-volume stress. As the Sn fraction increases, leading to the transition from an indirect-to-direct bandgap, the
electron affinity rises sharply, while the energy bandgap and the effective DOS decrease. Based on these material
parameters, an n-type metal-oxide-semiconductor field-effect transistor has been designed and optimized in terms
of DC parameters and high-frequency performance as a function of Sn fraction and the corresponding in-volume
biaxial stress in the channel region. As tensile stress or Sn fraction increases, both the on-state (I,,) and off-state
currents (Io¢) rise due to a narrowed bandgap energy, while the subthreshold swing (5) value also degrades. In con-
trast, compressive strain reduces Ig. Finally, the incorporation of GeSn channel is reported to be advantageous for
high-speed operation.
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I. INTRODUCTION

Given the scaling limits of conventional Si CMOS tech-
nology, functional materials with high carrier mobilities
are increasingly being introduced. Ge, in particular, has
garnered significant attention due to its high compatibility
with Si and superior carrier mobility compared to Si [1-4].
Incorporating Sn atoms into Ge creates the notable alloy,
Ge;_,Sn,, which has the potential to drive the next gen-
eration of both electronic and photonic devices with high
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carrier mobility modulation and wide bandgap tunability
[5-8]. This tunability not only allows control over the elec-
trical bandgap magnitude but also facilitates the transition
to a direct-bandgap material, a property not typically as-
sociated with conventional group-IV materials such as Si
and Ge [9-12]. Consequently, Sn incorporation enhances
the electrical and photonic properties of Ge;_,Sn,, mak-
ing it suitable for low-power, high-speed electronic and
photonic devices [13-17]. Due to the excellent properties
of GeSn, studies on GeSn layer growth are also being ac-
tively conducted [18-21]. To achieve more accurate sim-
ulation results than previous studies, this work effectively
couples the Perdew-Burke-Ernzerhof (PBE) and modified
Becke-Johnson (mBJ) potential models for solids to char-
acterize Ge;_,Sn,. A comprehensive analysis of material
parameters was performed as a function of Sn fraction
and in-volume biaxial strain. The latter part of this pa-
per presents a systematic approach to device simulation
(Silvaco ATLAS 2D with Deckbuild interface), applying
the material parameters obtained from atomic-level sim-
ulations (Quantum Espresso). The study examines how
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primary DC parameters, such as I,, and S, and high-
frequency performance depend on Sn fraction and in-
volume biaxial stress. Notably, the cut-off frequency (fr)
does not exhibit a monotonic dependence on the magni-
tude of tensile strain in GeSn but instead shows a local
maximum. The compressive strain increased fr, reaching
a maximum of 120 GHz at 0.5% strain.

II. FIRST-PRINCIPLE SIMULATION
STRATEGY

Full-potential and all-electron schemes with relativistic
effects were considered in the first-principle simulation to
achieve higher accuracy and credibility. A two-atom unit
cell for the base structure was used to construct the super-
cell (SC) shown in Fig. 1. Sn atoms were then incorpo-
rated into the Ge SC to represent the alloy with a targeted
Sn fraction. Volume optimization was performed using
the PBE model for solids, ensuring minimum energy and
zero pressure. The Sn fraction was controlled from 0% to
12.5%, confirming bandgap modulation, specifically the
indirect-to-direct bandgap transition. Under these condi-
tions, in-volume pressure was applied to the SCs as in-
volume biaxial strain, varying the lattice constant from -
2% (compressive strain) to +2% (tensile strain). Although
this situation can be virtually manipulated, it can be real-
ized by applying external stresses from materials with in-
tentionally deposited thermal expansion coefficients dur-
ing process integration. By varying the Sn fraction and
in-volume biaxial strain, 15 distinct SC models were con-
structed, and the mBJ potential models were applied to
obtain more realistic energy bandgap values at non-zero
temperatures.

III. RESULTS AND DISCUSSION

1. Material Simulation Results

Fig. 2 shows a total of 15 E-k band diagrams as a func-
tion of Sn fraction x and degrees of stress directions. The

16 atom supercell
composed of 2-atom
primitive unitcells

Fig. 1. 16-atom Ge supercell comprising 2-atom unit cells used
for ab initio calculations.
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Fig. 2. E-k diagram of Ge;_,Sn, as a function of Sn fraction x
and in volume biaxial strain.
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Fig. 3. Energy levels and bandgap transition as a function of the
in-volume strain (a) Ge0<937Sn0,063 and (b) G€0.875SHO'125.

Sn fraction increases along the vertical axis from 0.000 to
0.1250, while the stress varies along the horizontal axis
from -2% to +2%. The color and point size represent the
Bloch spectral weights, which are determined by both the
degeneracy of the allowed quantum states and the cumu-
lative effects of the corresponding Bloch characteristics
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Fig. 4. Electron affinity of Ge,_,Sn, as a function of in-volume
biaxial strain and Sn fraction.

on the electron potential energy. Fig. 3 shows the energy
levels of Geg.937Sng gg3 and Geg g75Sng 125 at the L (Ep), I
(Er), A (Ey) valleys; the heavy-hole and light-hole bands,
along with the spin-orbit band, are also depicted. As the Sn
fraction and external tensile strain increase, the bandgap
energy becomes narrow. The indirect-to-direct bandgap
transition occurred at approximately 0.581% compressive
strain for Gegg37Sng 63, as shown in Fig. 3(a), and the
direct-to-indirect bandgap transition occurred at approx-
imately 0.778% tensile strain for Geg g75Sng 125, as shown
in Fig. 3(b). The energy bandgap in the I" valley decreas-
esmore rapidly compared to those in the L and A valleys,
leading to the indirect-to-direct bandgap transition. Even
a small in-volume tensile strain, as small as 1%, induced a
bandgap transition in Geg g755n¢.125. The electron affinity
rapidly increases after the transition to a direct bandgap,
as the I" valley lowers faster than the L valley, as shown
in Fig. 4. With an increase in Sn fraction, the bandgap en-
ergy and effective DOS values decrease sharply, as shown
in Fig. 5. All extracted and calculated parameters repre-
senting the material characteristics at various Sn fractions
and strain conditions were then fed into the device sim-
ulations for the design of the GeSn n-type metal-oxide-
semiconductor field-effect transistor (NMOFSET) design.

2. Device Simulation Results

As recent researches have demonstrated, studies on the
design and fabrication of GeSn-based devices are increas-
ingly important, emphasizing the importance of utilizing
the excellent properties of GeSn for various electronic
device applications [22-25]. To achieve this, the growth
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Fig. 5. Bandgap energy of Ge;_,Sn, as a function of in-volume
biaxial strain and Sn fraction.
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Fig. 6. Transfer curves of Ge,_,Sn, NMOSFETs at various Sn
fractions under in-volume biaxial strain.

of high-quality single-crystalline GeSn on silicon plat-
forms is crucial, as it ensures compatibility with existing
Si-based technologies and enables practical device fab-
rication [26-29]. Most previous studies have focused on
the application of Ge;_,Sn, to p-type MOSFETSs, which
typically exhibit a lower off-state current (/,¢) compared
to NMOFSETs. However, this study controls the leakage
current of the GeSn NMOFSET device through adjust-
ments in Ge fraction and in-volume biaxial strain. The
channel length of the GeSn NMOSFET is 800 nm, with
Si and in-volume biaxial strained Ge;_,Sn, serving as
the substrate and channel, respectively. Device simula-
tions were conducted on 81 device structures under var-
ious conditions to ensure comprehensive analysis through
a material-and-device cooperative design. Fig. 6 shows
the transfer curves of Ge,;_,Sn, NMOSFETSs at various
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Fig. 7. High-frequency performance as a function of Sn fraction
and compressive strain, specifically at a Sn fraction of
6.3%.

Sn fractions and under in-volume biaxial stress. With in-
creasing Sn fraction and tensile stress, both I,, and Iy
increased due to bandgap narrowing and enhanced car-
rier mobility. Compressive strain effectively reduced Iy,
demonstrating that an optimization can be achieved to bal-
ance I, and I¢. In the case of tensile strain, the I/l
maintains a high value of about 108, and with compressive
strain, it reaches approximately 10'°, demonstrating su-
perior on/off characteristics. Notably, compressive strain
is suitable for implementing low-power devices by ef-
fectively reducing I while maintaining an appropriate
level of I,,. However, increasing either tensile stress or
Sn fraction led to a degradation in the subthreshold swing
(S). Finally, Fig. 7 presents the high-frequency perfor-
mance, including current gain and fr, as a function of
compressive strain in Geg 937500 063. A compressive strain
of 0.5% in Ge937Sng 63 yielded an fr of 120 GHz, sig-
nificantly higher than the 21 GHz for MOSFETs with bulk
Ge channels and the 25 GHz for 1.0% tensile-strained
Gep.9375n0 g¢3 channels.

IV. CONCLUSION

In this work, a systematic study of Ge;_,Sn, was con-
ducted using a bottom-up approach, linking material pa-
rameters and device design for greater credibility. The
wide-range bandgap energy tunability and the indirect-to-
direct bandgap transition of Ge;_,Sn, highlight its poten-
tial to address the current limitations of CMOS technol-
ogy. Incorporating Ge;_,Sn, into the channel enhanced

high-speed performance and suppressed off-state leakage,
given an appropriate Sn fraction and stress, as concluded
through material-device co-design.
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