Title |
Decomposition of Shear Resistance Components in Reinforced Concrete Beams
|
Keywords |
truss model ; compatibility ; shear resistance component ; arch action ; reinforced concrete beam |
Abstract |
The objective of the present study is to verify the validity of a new truss model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. The new truss model is based on the relationship between shear and bending moment in a beam subjected to combined shear and bending. The compatibility condition of the shear deformation that deviates from Bermoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. On the basis of the analytical results, the contribution by the web to shear resistance can be constant and have an excellent linear correlation with the web reinforcement ratio. The present decoupling approach may provide a simple way for the assessment of the role of each parameter or mechanism that affects the ultimate shear behavior of reinforced concrete beams.
|