Title |
Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers
|
Keywords |
비틀림 강섬유 ; 고성능 섬유보강 시멘트 복합재료 ; 인발에너지 ; 비틀림 횟수 twisted fiber ; high performance fiber reinforced cementitious composites ; pullout energy ; number of twist |
Abstract |
This research investigated the influence of the number of twist on single fiber pullout behavior of Twisted steel (T-) fiber and tensile behavior of high performance cementitious composites reinforced with the (T-) fibers (HPFRCC). Micromechanical pullout model for T- fibers has been applied to analytically investigate the influence of various fiber parameters including the number of twist on single fiber pullout behavior; and, to optimize the number of twist to generate larger pullout energy during fiber pullout without fiber breakage. In addition, an experimental program including single fiber pullout and tensile tests has been performed to investigate the influence of twist ratio experimentally. Two types of T- fiber with different twisted ratios, T(L)- fiber (6ribs/30 mm) and T(H)- fiber (18ribs/30 mm), were tested. T(L)- fiber produced higher equivalent bond strength (larger pullout energy) although T(H)- fiber produced higher pullout stress during pullout since T(H)- fiber showed fiber breakage during pullout. Tensile test results confirmed that T(L)- fiber in high strength mortar generates better tensile performance of HPFRCC, e.g., load carrying capacity, strain capacity and multiple micro-cracking behavior.
|