Title |
Technique for the Measurement of Crack Widths at Notched / Unnotched Regions and Local Strains
|
Keywords |
화상상관기법 ; DIC ; 인장균열 측정 ; 균열개구변위 digital image correlation ; DIC ; tensile crack measurement ; crack mouth opening displacement |
Abstract |
Crack widths play an important role in the serviceability limit state. When crack widths are controlled sufficiently, the reinforcement corrosion can be reduced using only existing concrete cover thickness due to low permeability in the region of finely distributed hair-cracks. Thus, the knowledge about the tensile crack opening is essential in designing more durable concrete structures. Therefore, numerous researches related to the topic have been performed. Nevertheless accurate measurement of a crack width is not a simple task due to several reasons such as unknown potential crack formation location and crack opening damaging strain gages. In order to overcome these difficulties and measure precise crack widths, a displacement measurement system was developed using digital image correlation. Accuracy calibration tests gave an average measurement error of 0.069 pixels and a standard deviation of 0.050 pixels. Direct tensile test was performed using ultra high performance concrete specimens. Crack widths at both notched and unnotched locations were measured and compared with clip-in gages at various loading steps to obtain crack opening profile. Tensile deformation characteristics of concrete were well visualized using displacement vectors and full-field displacement contour maps. The proposed technique made it possible to measure crack widths at arbitrary locations, which is difficult with conventional gages such as clip-in gages or displacement transducers.
|