Title |
Downscaling Technique of Monthly GCM Using Daily Precipitation Generator |
Keywords |
climate change;downscaling;K-NN;daily precipitation generator;frequency analysis;기후변화;축소기법;K-NN;일강수발생모형;빈도해석 |
Abstract |
This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased. |