Title |
Comparative Study on the Estimation Methods of Traffic Crashes : Empirical Bayes Estimate vs. Observed Crash |
Keywords |
traffic crashes;empirical Bayes estimate;observed crashes;estimation error;교통사고;경험적 베이즈 추정치;관측교통사고건수;추정오차 |
Abstract |
In the study of traffic safety, it is utmost important to obtain more reliable estimates of the expected crashes for a site (or a segment). The observed crashes have been mainly used as the estimate of the expected crashes in Korea, while the empirical Bayes (EB) estimates based on the Poisson-gamma mixture model have been used in the USA and several European countries. Although numerous studies have used the EB method for estimating the expected crashes and/or the effectiveness of the safety countermeasures, no past studies examine the difference in the estimation errors between the two estimates. Thus, this study compares the estimation errors of the two estimates using a Monte Carlo simulation study. By analyzing the crash dataset at 3,000,000 simulated sites, this study reveals that the estimation errors of the EB estimates are always less than those of the observed crashes. Hence, it is imperative to incorporate the EB method into the traffic safety research guideline in Korea. However, the results show that the differences in the estimation errors between the two estimates decrease as the uncertainty of the prior distribution increases. Consequently, it is recommended that the EB method be used with reliable hyper-parameter estimates after conducting a comprehensive examination on the estimated negative binomial model. |