Title |
Analysis of Noise Influence on a Chaotic Series and Application of Filtering Techniques |
Keywords |
chaotic series;noise influence;BDS statistics;DVS algorithm;filtering technique;카오스 계열;잡음 영향;BDS 통계;DVS 알고리즘;필터링 기법 |
Abstract |
We studied noise influence on nonlinear chaotic system by using Logistic data series which is known as a typical nonlinear chaotic system. We regenerated Logistic data series by the method of adding noise according to noise level. And, we performed some analyses such as phase space reconstruction, correlation dimension, BDS statistics, and DVS Algorithms which are known as the methods of nonlinear deterministic or chaotic analysis. If we see the results of analysis, the characteristics of data series are gradually changed from nonlinear chaotic data series to random stochastic data series according to increasing noise level. We applied Low Pass Filter (LPF) and Kalman Filter techniques for the investigation of removing effect of the added noise to data series. Typical nonparametric method cannot distinguish nonlinear random series but the BDS statistic can distinguish the nonlinear randomness of the time series. Therefore this study used the BDS statistic which is well known as nonlinear statistical method for the investigation of randomness of time series for the effect of removing noise of data series. We found that Kalman filter is better method to remove the noise of chaotic data series even for high noise level. |