Title |
Development of Daily Rainfall Simulation Model Using Piecewise Kernel-Pareto Continuous Distribution |
Keywords |
markov chain;daily rainfall;piecewise kernel-pareto distribution;extreme rainfall;일강수량;불연속 Kernel-Pareto 분포;극치강수량 |
Abstract |
The limitations of existing Markov chain model for reproducing extreme rainfalls are a known problem, and the problems have increased the uncertainties in establishing water resources plans. Especially, it is very difficult to secure reliability of water resources structures because the design rainfall through the existing Markov chain model are significantly underestimated. In this regard, aims of this study were to develop a new daily rainfall simulation model which is able to reproduce both mean and high order moments such as variance and skewness using a piecewise Kernel-Pareto distribution. The proposed methods were applied to summer and fall season rainfall at three stations in Han river watershed in Korea. The proposed Kernel-Pareto distribution based Markov chain model has been shown to perform well at reproducing most of statistics such as mean, standard deviation and skewness while the existing Gamma distribution based Markov chain model generally fails to reproduce high order moments. It was also confirmed that the proposed model can more effectively reproduce low order moments such as mean and median as well as underlying distribution of daily rainfall series by modeling extreme rainfall separately. |