Title |
Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea |
Authors |
박기진(Park, Ki Jin) ; 김기영(Kim, Ki Young) ; 김찬영(Kim, Chan Young) ; 박종민(Park, Jong Min) |
DOI |
https://doi.org/10.12652/Ksce.2024.44.5.0637 |
Keywords |
ECOSTRESS; 원격탐사; 지표면 온도; 증발산 ECOSTRESS; Remote sensing; Land surface temperature; Evapotranspiration |
Abstract |
The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea. |