The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

Title Development of Multi-functional Ceramics for Removal of Heavy Metals in Acid Wastewater using Industrial By-product
Authors 김동희 ( Dong Hee Kim ) ; 임수빈 ( Soo Bin Yim )
Page pp.277-284
ISSN 2289-0971
Keywords Acid wastewater; Ceramics; Converter slag; Heavy metal; Industrial by-product; Zeolite
Abstract This study developed a new ceramics in which natural zeolite was mixed and calcined with industrial by-product such as converter slag, red mud, and fly ash and evaluated the feasibility of the ceramics for removal of heavy metals in acid wastewater. The removal rate of heavy metal by ceramics increased in the order of ZS (zeolite and slag) > ZR (zeolite and red mud) > ZF (zeolite and fly ash) ceramics. The alkalinity increment and coherence of ceramics were increased in the order of ZS > ZR > ZF ceramics. The mixing ratio of natural zeolite to industrial by-product for maximum removal efficiency of heavy metal was 1:1 for ZS ceramics and 1:3 for ZR and ZF ceramics. The order of removal efficiency of heavy metal was observed to be ZS > ZR > ZF ceramics under the mixing ratio of 1:1 for ZS ceramics and 1:3 for ZR and ZF ceramics. The removal efficiency of heavy metal by ZS ceramics with 1:1 mixing ratio was Al 100%, Cd 54.6%, Cr 99.9%, Cu 98.7%, Fe 99.9%, Mn 42.2%, Ni 59.9%, Pb 99.8%, Zn 87.6%, respectively. In addition, the removal capacity of heavy metal by ZS ceramics was observed to be Al 2.01 mM/g, Cd 0.27 mM/g, Cr 1.02 mM/g, Cu 0.83 mM/g, Fe 0.95 mM/g, Mn 0.41 mM/g, Ni 0.55 mM/g, Pb 0.25 mM/g, Zn 0.70 mM/g, respectively. The comparative evaluation in the light of removal capacity, alkalinity increment, and coherence of ceramics showed the ZS ceramics had higher feasibility as a media than others for removal of heavy metals in acid wastewater.