The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

Title Influence Analysis of Temporal Continuity Change of Flow Data on Load Duration Curve
Authors 권필주 ( Pil Ju Kwon ) ; 한정호 ( Jeong Ho Han ) ; 류지철 ( Ji Chul Ryu ) ; 김홍태 ( Hong Tae Kim ) ; 임경재 ( Kyoung Jae Lim ) ; 김종건 ( Jong Gun Kim )
DOI https://doi.org/10.15681/KSWE.2017.33.4.394
Page pp.394-402
ISSN 2289-0971
Keywords FDC; LDC; Pollutant loads; TMDL
Abstract In korea, TMDL is being implemented to manage nonpoint pollution sources as well as point pollution sources. LDC is being used for the planning of TMDL. In order to analyze the water quality using LDC, it is necessary to prepare FDC using the daily flow data. However, only the daily flow data is measured at the WAMIS branch, and 8days flow data and water quality data are measured at the monitoring Networks. So, in many researches, the water quality is being grasped by deriving the LDC using the 8days flow or the daily flow obtained by various methods. These fluctuations may lead to differences in determining whether the target load is achieved. In this study, each LDC was prepared using the 8day flow and the related daily flow. Then, the effect using different flow data on the achievement of target load was compared according to flow conditions. As a result, the difference ratio in the number of overloads under flow condition was showed 19% in high flows, 42% in moist conditions, 49% in mid-range flows, 41% in dry conditions, and 104% in low flows. In the top ten watershed with the highest difference ratio, the flow became lower the difference ration increases. These differences can cause uncertainty in assessing the achievement of target load using LDC. Therefore, in order to evaluate the water quality accurately and reliably using LDC, accurate daily flow data and water quality data should be secured through the installation of national nonpoint measurement network.