The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

Title Development of Parsimonious Semi-Distributed Hydrologic Partitioning Model Based on Soil Moisture Storages
Authors 최정현 ( Jeonghyeon Choi ) ; 김령은 ( Ryoungeun Kim ) ; 김상단 ( Sangdan Kim )
DOI https://doi.org/10.15681/KSWE.2020.36.3.229
Page pp.229-244
ISSN 2289-0971
Keywords Antecedent soil moisture condition; Hydrologic partitioning; Parsimonious semi-distributed model; Soil moisture
Abstract Hydrologic models, as a useful tool for understanding the hydrologic phenomena in the watershed, have become more complex with the increase of computer performance. The hydrologic model, with complex configurations and powerful performance, facilitates a broader understanding of the effects of climate and soil in hydrologic partitioning. However, the more complex the model is, the more effort and time is required to drive the model, and the more parameters it uses, the less accessible to the user and less applicable to the ungauged watershed. Rather, a parsimonious hydrologic model may be effective in hydrologic modeling of the ungauged watershed. Thus, a semi-distributed hydrologic partitioning model was developed with minimal composition and number of parameters to improve applicability. In this study, the validity and performance of the proposed model were confirmed by applying it to the Namgang Dam, Andong Dam, Hapcheon Dam, and Milyang Dam watersheds among the Nakdong River watersheds. From the results of the application, it was confirmed that despite the simple model structure, the hydrologic partitioning process of the watershed can be modeled relatively well through three vertical layers comprising the surface layer, the soil layer, and the aquifer. Additionally, discussions were conducted on antecedent soil moisture conditions widely applied to stormwater estimation using the soil moisture data simulated by the proposed model.