The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

Title The Fractionation Characteristics of BOD in Streams
Authors 김호섭 ( Ho-sub Kim ) ; 오승영 ( Seung-young Oh )
DOI https://doi.org/10.15681/KSWE.2021.37.2.92
Page pp.92-102
ISSN 2289-0971
Keywords Algal oxygen demand; Carbonaceous BOD; Nitrifying bacteria; Nitrogenous oxygen demand; Particulate CBOD
Abstract In this study, the distribution characteristics according to the type of BOD and the effect of nitrogenous oxygen demand (NOD) and algal oxygen demand on BOD in three streams (Bokhacheon, Byeongseongcheon, and Gulpocheon) were evaluated. Although the BOD and NOD concentrations demonstrated a difference in the three streams, the carbonaceous BOD(CBOD)/BOD ratio was 0.75 (p=0.053, one-way ANOVA), and there was no significant difference in the three streams (r2≥0.92, p<0.0001). The NOD concentration of the Bokhacheon with high NH3-N was 1.7±1.3 ㎎/L, which was the highest among the three streams and showed a significant correlation with BOD. Seasonal variations in NOD in the three streams did not show a significant correlation with changes in NH3-N concentration (r2<0.28, p≥0.1789), and there was no significant difference in NOD even though NH3-N concentration in Gulpocheon was about twice that of Byeongseongcheon (p=0.870, one way ANOVA). The particulate CBOD(PCBOD)/CBOD ratio of the three streams was 0.55~0.64, and about 60% of the biodegradable organic matter was present in the particulate form. When the Chl.a concentration in the stream was more than 7 ㎍/L, the PCBOD tended to increase with the Chl.a concentration (r2=0.61, p=0.003). In the three streams, particulate NOD accounted for 81% of NOD; however, despite the large variation in NH3-N concentration (0.075~3.182 ㎎/L), there was no significant difference in soluble NOD(SNOD) concentration that ranged from 0.1 to 0.3 ㎎/L. In this study, the low contribution rate of SNOD to NOD is considered as a result of the removal of nitrifying bacteria along with the particles during the filtration process.