The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

Title Prediction of Trihalomethanes Formation Potential of Dissolved Organic Matter with Various Sources Using Differential Fluorescence 3D-Excitation-Emission Matrix (EEM)
Authors 배경록 ( Kyung Rok Bae ) ; 허진 ( Jin Hur )
DOI https://doi.org/10.15681/KSWE.2022.38.2.63
Page pp.63-71
ISSN 2289-0971
Keywords Differential EEM (DEEM); Dissolved organic matter (DOM); Fluorescence; Trihalomethanes formation potential (THMFP)
Abstract This study aimed to maximize the potential of fluorescence 3D excitation-emission matrix (EEM) for predicting the trihalomethane formation potential (THMFP) of DOM with various sources. Fluorescence spectroscopy is a useful tool for characterizing dissolved organic matter (DOM). In this study, differential spectroscopy was applied to EEM for the prediction of THMFP, in which the difference between the EEM before and after chlorination was taken into account to obtain the differential EEM (DEEM). For characterization of the original EEM or the DEEM, the maximum intensities of several different fluorescence regions in EEM, fluorescence EEM regional integration (FRI), and humification index (HIX) were calculated and used for the surrogates for THMFP prediction. After chlorination, the fluorescence intensity decreased by 77% to 93%. In leaf-derived and effluent DOM, there was a significant decrease in the protein-like peak, while a more pronounced decrease was observed in the humic-like peak of river DOM. In general, leaf-derived and effluent DOM exhibited a relatively lower THMFP than the river DOM. Our results were consistent with the high correlations between humic-like fluorescence and THMFP previously reported. In this study, HIX (r= 0.815, p<0.001), FRI region V (r=0.727, p<0.001), humic-like peak (r= 0.827, p<0.001) from DEEM p resented very high correlations with THMF P. When the humic-like peak intensity was converted to a logarithmic scale, a higher correlation was obtained (r= 0.928, p<0.001). This finding suggests that the humic-like peak in DEEM can serve as a universal predictor for THM formation of DOM with various origins.