Mobile QR Code QR CODE

REFERENCES

1 
Prince M., Albanese E., Guerchet M., Prina M., Sep. 2014, World Alzheimer Report 2014: Dementia and risk reduction: An analysis of protective and modifiable risk factors, Accessed: Apr. 03, 2019.URL
2 
Albert M. S., et al. , May 2011, The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement. J. Alzheimers Assoc., Vol. 7, No. 3, pp. 270-279DOI
3 
Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., Kokmen E., Mar. 1999, Mild Cognitive Impairment: Clinical Characterization and Outcome, Arch. Neurol., Vol. 56, No. 3, pp. 303-308DOI
4 
McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M., Jul. 1984, Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease, Neurology, Vol. 34, No. 7, pp. 939-944DOI
5 
Blennow K., Hampel H., Oct. 2003, CSF markers for incipient Alzheimer’s disease, Lancet Neurol., Vol. 2, No. 10, pp. 605-613DOI
6 
Beach T. G., Monsell S. E., Phillips L. E., Kukull W., Apr. 2012, Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010, J. Neuropathol. Exp. Neurol., Vol. 71, No. 4, pp. 266-273DOI
7 
Jack C. R., et al. , 2008, The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods, J. Magn. Reson. Imaging, Vol. 27, No. 4, pp. 685-691DOI
8 
Aug. 2007, Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria, Lancet Neurol., Vol. 6, No. 8, pp. 734-746DOI
9 
Langbaum J. B., et al. , Jul. 2013, Ushering in the study and treatment of preclinical Alzheimer disease, Nat. Rev. Neurol., Vol. 9, No. 7, pp. 371-381DOI
10 
Hampel H., Bürger K., Teipel S. J., Bokde A. L. W., Zetterberg H., Blennow K., Jan. 2008, Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease, Alzheimers Dement. J. Alzheimers Assoc., Vol. 4, No. 1, pp. 38-48DOI
11 
Mosconi L., et al. , May 2009, FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease, Eur. J. Nucl. Med. Mol. Imaging, Vol. 36, No. 5, pp. 811-822DOI
12 
Vounou M., et al. , Mar. 2012, Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer’s disease, NeuroImage, Vol. 60, No. 1, pp. 700-716DOI
13 
Zhang D., Wang Y., Zhou L., Yuan H., Shen D., Alzheimer’s Disease Neuroimaging Initiative , Apr. 2011, Multimodal classification of Alzheimer’s disease and mild cognitive impairment, NeuroImage, Vol. 55, No. 3, pp. 856-867DOI
14 
Zhang D., Shen D., Alzheimer’s Disease Neuroimaging Initiative , Jan. 2012, Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease, NeuroImage, Vol. 59, No. 2, pp. 895-907DOI
15 
Kohannim O., et al. , Aug. 2010, Boosting power for clinical trials using classifiers based on multiple biomarkers, Neurobiol. Aging, Vol. 31, No. 8, pp. 1429-1442DOI
16 
Davatzikos C., Fan Y., Wu X., Shen D., Resnick S. M., Apr 2008, Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging, Neurobiol. Aging, Vol. 29, No. 4, pp. 514-523DOI
17 
2016, Biomarkers in Alzheimer’s Disease., ElsevierGoogle Search
18 
Jack C. R., et al. , Apr. 1999, Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment, Neurology, Vol. 52, No. 7, pp. 1397-1403DOI
19 
Feng F., et al. , Sep. 2018, Radiomic Features of Hippocampal Subregions in Alzheimer’s Disease and Amnestic Mild Cognitive Impairment, Front. Aging Neurosci., Vol. 10DOI
20 
Lerch J. P., Pruessner J. C., Zijdenbos A., Hampel H., Teipel S. J., Evans A. C., Jul. 2005, Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy, Cereb. Cortex N. Y. N 1991, Vol. 15, No. 7, pp. 995-1001DOI
21 
Fischl B., Aug. 2012, FreeSurfer, NeuroImage, Vol. 62, No. 2, pp. 774-781DOI
22 
Desikan R. S., et al. , Jul. 2006, An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, Vol. 31, No. 3, pp. 968-980DOI
23 
Guyon I., Weston J., Barnhill S., Vapnik V., Jan. 2002, Gene Selection for Cancer Classification using Support Vector Machines, Mach. Learn., Vol. 46, No. 1, pp. 389-422DOI
24 
Warner H. R., Toronto A. F., Veasey L. G., Stephenson R., Jul. 1961, A Mathematical Approach to Medical Diagnosis: Application to Congenital Heart Disease, JAMA, Vol. 177, No. 3, pp. 177-183DOI
25 
Tufail A. B., Abidi A., Siddiqui A. M., Younis M. S., Dec. 2012, Automatic Classification of Initial Categories of Alzheimer’s Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods, Int. J. Biomed. Biol. Eng., Vol. 6, No. 12, pp. 713-717DOI
26 
Westman E., Muehlboeck J.-S., Simmons A., Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion., NeuroImage. 2012, Vol. 62, No. 1, pp. 229-238DOI
27 
Hinrichs C., Singh V., Xu G., Johnson S. C., 2011, Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population., NeuroImage, Vol. 55, No. 2, pp. 574-589DOI
28 
Zhang D., Shen D., 2012, Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease., NeuroImage., Vol. 59, No. 2, pp. 895-907DOI
29 
Liu M, Cheng D, Wang K, Wang Y; Alzheimer’s Disease Neuroimaging Initiative., 2018 Oct., Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis., Neuroinformatics, Vol. 16, No. 3-4, pp. 295-308DOI