Mobile QR Code QR CODE

REFERENCES

1 
Hwang S., Park J., Kim N., et al., June 2015, Multispectral pedestrian detection: benchmark dataset and baseline., Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 1037-1045DOI
2 
Liu J., Zhang S., Wang S., et al. , September 2016, Multispectral deep neural networks for pedestrian detection., Proc. British Machine Vision Conf., York, UK, pp. 1-13DOI
3 
König D., Adam M., Jarvers C., e tal. , July 2017, Fully convolutional region proposal networks for multispectral person detection., Proc. IEEE Workshop on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 243-250DOI
4 
Chen Y., Xie H., Shin H., 2018, Multi-layer fusion techniques using a CNN for multispectral pedestrian detection., IET Computer Vision, Vol. 12, No. 8, pp. 1179-1187DOI
5 
uan D., Cao Y., Yang J., Cao Y., Yang M.Y., 2019, Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection., Information Fusion, Vol. 50, pp. 148-157DOI
6 
Li C., Song D., Tong R., Tang M., 2019, Illumination-aware faster R-CNN for robust multispectral pedestrian detection., Pattern Recognition, Vol. 85, pp. 161-171DOI
7 
Guan D., Cao Y., Yang J., Cao Y., Tisse C.L., 2018, Exploiting fusion architectures for multispectral pedestrian detection and segmentation., Applied optics, Vol. 57, No. 18, pp. d108-D116DOI
8 
Li C., Song D., Tong R., Tang M., 2018, Multispectral pedestrian detection via simultaneous detection and segmentation., arXiv preprint arXiv:1808.04818.URL
9 
Zheng Y., Izzat I.H., Ziaee S., 2019, GFD-SSD: Gated Fusion Double SSD for Multispectral Pedestrian Detection., arXiv preprint arXiv:1903.06999.URL
10 
Pei D., Jing M., Liu H., Jiang L., Sun F., 2020, A Fast RetinaNet Fusion Framework for Multi-spectral Pedestrian Detection., Infrared Physics & TechnologyDOI
11 
Ren S., He K., Girshick R., Sun J., 2015, Faster r-cnn: Towards real-time object detection with region proposal networks., In Advances in neural information processing systems, pp. 91-99DOI
12 
Lin T.Y., Goyal P., Girshick R., He K., Dollár P., 2017, Focal loss for dense object detection., In Proceedings of the IEEE international conference on computer vision, pp. 2980-2988DOI
13 
Lin T.Y., Dollár P., Girshick R., He K., Hariharan B., Belongie S., 2017, Feature pyramid networks for object detection., In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117-2125DOI
14 
Takumi K., Watanabe K., Ha Q., et al., Mountain View, Multispectral object detection for autonomous vehicles., Proc. Thematic Workshops of ACM MultimediaDOI
15 
Davis J.W., Sharma V., 2007, Background-subtraction using contour-based fusion of thermal and visible imagery, Comput. Vis. Image Underst., Vol. 106, No. 2-3, pp. 162-182DOI
16 
CVC-14: Visible-FIR Day-Night Pedestrian Sequence DatasetURL
17 
Dollár P., Wojek C., Schiele B., et al. , 2012, Pedestrian detection: an evaluation of the state of the art, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 34, No. 4, pp. 743-761DOI
18 
u C-Y, Liu W, Ranga A, Tyagi A, 2017, , DSSD: deconvolutional single shot detector., arXiv:1701.06659URL
19 
Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL, 2017, DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs., IEEE Trans Pattern Anal Mach Intell 40, Vol. 4, pp. 834-848.DOI
20 
Wang W., Lai Q., Fu H., Shen J., 2019, , Salient object detection in the deep learning era: An in-depth survey., arXiv preprint arXiv:1904.09146.URL
21 
Zhang S., Wen L., Bian X., Lei Z., Li S.Z., 2018, Occlusion-aware r-cnn: detecting pedestrians in a crowd., In Proceedings of the European Conference on Computer Vision, pp. 637-653DOI
22 
Wang T., Anwer R.M., Cholakkal H., Khan F.S., Pang Y., Shao L., 2019, Learning rich features at high-speed for single-shot object detection., In Proceedings of the IEEE International Conference on Computer Vision, pp. 1971-1980DOI
23 
Zhang L., Zhu X.Y., Chen X.Y., Yang X., Lei Z., L Z.Y., 2019, Weakly aligned cross-modal learning for multispectral pedestrian detection., In Proceedings of the IEEE International Conference on Computer Vision., pp. 5127-5137DOI
24 
Zhang H., Fromont E., Lefevre S., Avignon B., 2020, Multispectral Fusion for Object Detection with Cyclic Fuse-and-Refine Blocks., In Proceedings of the IEEE International Conference on Image Processing.DOI
25 
Zhou K.L., Chen L.S., Cao X., 2020, Improving Multispectral Pedestrian Detection by Addressing Modality Imbalance Problems., arXiv preprint arXiv:2008.03043.URL