Mobile QR Code QR CODE

REFERENCES

1 
Hamdi G., El Hajjaji A., Krid M., Chaabane M., 2018, Stability analysis and memory control design of polynomial fuzzy systems with time delay via polynomial Lyapunov-Krasovskii functional, International Journal of Control, Automation and Systems, Vol. 16, No. 4, pp. 2011-2020DOI
2 
Wu Y., Wu Y., 2019, Linear matrix inequality approach to stochastic stabilization of networked control system with markovian jumping parameters, International Journal of Control, Automation and Systems, Vol. 17, No. 2, pp. 405-414DOI
3 
Gu K., Niculescu S. I., 2003, Survey on recent results in the stability and control of time-delay systems, Journal of Dynamic Systems, Measurement, and Control, Vol. 125, No. 2, pp. 158-165DOI
4 
Richard J., Oct. 2003, Time-delay systems: an overview of some recent advances and open problems, Automatic, Vol. 39, No. 10, pp. 1667-1694DOI
5 
Fridman E., Shaked U., 2002, An improved stabilization method for linear time-delay systems, IEEE Transactions on Automatic Control, Vol. 47, pp. 1931-1937DOI
6 
Kao C. Y., Rantzer A., 2007, Stability analysis of systems with uncertain time-varying delays, Automatica, Vol. 43, pp. 959-970DOI
7 
Olgac N., Sipahi R., 2002, An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems, IEEE Trans. Autom. Control, Vol. 47, pp. 793-797DOI
8 
Sipahi R., Niculescu S., Abdallah C., Michiels W., Gu K., 2011, Stability and stabilization of systems with time delay, IEEE Control Syst. Mag., Vol. 31, pp. 38-65DOI
9 
Kim J. H., 2011, Note on stability of linear systems with time-varying delay, Automatica, Vol. 47, pp. 2118-2121DOI
10 
Park P. G., Ko J. W., 2007, Stability and robust stability for systems with a timevarying, Automatica, Vol. 43, pp. 1855-1858DOI
11 
Ariba Y., Gouaisbaut F., 2009, An augmented model for robust stability analysis of time-varying delay systems, Int. J. Control, Vol. 82, pp. 1616-1626DOI
12 
Zeng H.B., He Y., Wu M., Xiao S.P, 2013, Less conservative results on stability for linear systems with a time-varying delay, Opt. Control Appl. Methods, Vol. 34, pp. 670-679DOI
13 
Gu K., Kharitonov V. L., Chen J., 2003, Stability of Time-Delay Systems, Boston, MA, USA: BirkhauserURL
14 
Seuret A., Gouaisbaut F., 2013, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, Vol. 49, pp. 2860-2866DOI
15 
Wu M., He Y., She J. H., Liu G. P., 2004, Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, Vol. 40, pp. 1435-1439DOI
16 
Zeng H., He Y., Wu M., She J., 2015, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE Trans. Autom. Control, Vol. 60, pp. 2768-2772DOI
17 
Park P., Ko J.W., Jeong C, 2011, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, Vol. 47, pp. 235-238DOI
18 
Ramakrishnan K., Ray G., 2013, Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay, Appl. Math. Model., Vol. 37, pp. 1468-1479DOI
19 
Kwon O.M., Park M.J., Park J.H., Lee S.M., Cha E.J, 2013, Improved delay-dependent stability criteria for discrete-time systems with time-varying delays, Circuits Syst. Signal Process, Vol. 32, pp. 1949-1962DOI
20 
Seuret A., Gouaisbaut F., 2015, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Systems Control Lett, Vol. 81, pp. 1-8DOI
21 
Park P. G., Lee W. I., Lee S. Y., 2015, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin Inst, Vol. 352, pp. 1378-1396DOI
22 
Lian H., Xiao S., Zeng H., Zhang X., Chen G., 2017, Relaxed dissipativity conditions of neural networked with time-varying delay via generalized free-weighting-matrix approach, on 29th Chinese Control and Decision Conference (CCDC), pp. 7066-7071DOI
23 
Kim J. H., 2016, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, Vol. 64, pp. 121-125DOI
24 
Zhang C. K., He Y., Jiang L., Lin W. J., Wum M., 2017, Delay-dependent stability analysis of neural networks with time-varying delay: a generalized free-weighting-matrix approach, Appl Math Comput, Vol. 194, pp. 102-120DOI
25 
Park M. J., Kwon O. M., Ryu J. H., 2018, Passivity and stability analysis of neural networks with time-varying delays via extended free-weighting matrices integral inequality, Neural Networks, Vol. 106, pp. 67-78DOI
26 
Liu X., Xu Q., Liu X., Tang M., Wang F., 2018, Novel double integral inequalities and their application to stability of delayed systems, Int. J. Innov. Comput. I, Vol. 14, pp. 1805-1832URL
27 
Seuret A., Gouaisbaut F., 2014, Complete Quadratic Lyapunov functionals using Bessel-Legendre inequality, European control conference, pp. 448-453DOI
28 
Zeng H., He Y., Wu M., She J., 2015, New results on stability analysis for systems with discrete distributed delay, Automatica, Vol. 60, pp. 189-192DOI
29 
Chen J., Xu S., Zhang B., 2017, Single/Multiple integral inequalities with applications to stability analysis of time-delay systems, IEEE Trans. Automat., Vol. 62, pp. 3488-3493DOI
30 
Park M. J., Kwon O. M., Ryu J. H., 2018, Generalized integral inequality: Application to time-delay systems, Appl. Math. Lett., Vol. 77, pp. 6-12DOI
31 
Park M. J., Kwon O. M., Park J. H., Lee S. M., Cha E. J., 2015, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica, Vol. 55, pp. 204-208DOI
32 
Zhao N., Lin C., Chen B., Wang Q. C., 2017, A new double integral inequality and application to stability test for time-delay systems, Appl. Math. Lett., Vol. 65, pp. 26-31DOI
33 
Chen J., Park J. H., Xu S., 2019, Stability Analysis for Neural Networks with Time-Varying Delay via Improved Techniques, IEEE Trans. Cybernetics, Vol. 49, pp. 4495-4500DOI
34 
Xue Y., Li H., Yang X., 2018, An Improved Reciprocally Convex Inequality and Application to Stability Analysis of Time-Delay Systems Based on Delay Partition Approach, in IEEE Access, Vol. 6, pp. 40245-40252DOI
35 
Deren Gong , Xiaoliang Wang , Peng Dong , Shufan Wu , Xiaodan Zhu , 2020, Shifted Legendre polynomials-based single and double integral inequalities with arbitrary approximation order: Application to stability of linear systems with time-varying delays, AIMS Mathematics, Vol. 5, pp. 4371-4298DOI