Mobile QR Code QR CODE

REFERENCES

1 
Narasimhan S. G., Nayar S. K., Jul. 2002, Vision and the atmosphere, Int. J. Comput. Vision, Vol. 48, No. 3, pp. 233-254DOI
2 
Jingkun Z., Sep. 2015, Analysis of causes and hazards of China’s frequent hazy weather, The Open Cybernetics & Systemics Journal, Vol. 9, pp. 1311-1314DOI
3 
Yan Z., Zhang H., Wang B., Paris S., Yu. Y., 2016, Automatic photo adjustment using deep learning, ACM Trans. Graphics, Vol. 35, No. 2, pp. 11DOI
4 
Cowan C. K., Kovesi P. D., May. 1988, Automatic sensor placement from vision task requirements, IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 10, No. 3, pp. 407-416DOI
5 
Lee S., Maik V., Jang J., Shin J., Paik J., May. 2005, Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images, IEEE Trans. Consumer Electronics, Vol. 51, No. 2, pp. 648-653DOI
6 
Cai B., Xu X., Jia K., Qing C., Tao D., Jan. 2016, DehazeNet: an end-to-end system for single image haze removal, IEEE Trans. Image Processing, Vol. 25, No. 11, pp. 5187-5198DOI
7 
Li B., Peng X., Wang Z., Xu J-Z., Feng D., 2017, AOD-Net: all-in-one dehazing Network, IEEE Int. Conf. Computer Vision, pp. 4770-4778DOI
8 
Xu Qin , Zhilin Wang , Yuanchao Bai , Xiaodong Xie , Huizhu Jia , 2019, FFA-Net: Feature fusion attention network for single image dehazing, arXiv preprint arXiv:1911.07559DOI
9 
Godard C., Aodha O. M., Brostow. G. J., 2019, Digging into self-supervised monocular depth estimation, IEEE Int. Conf. Computer VisionDOI
10 
Alhashim I., Wonka. P., 2018, High quality monocular depth estimation via transfer learning, arXiv e-prints, abs/1812.11941URL
11 
McCartney E. J., 1976, Optics of the atmosphere: Scattering by molecules and particles, New York, NY, USA: WileyURL
12 
He K., Sun J., Tang X., Dec. 2011, Single image haze removal using dark channel prior, IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 33, No. 12, pp. 2341-2353DOI
13 
Zhang H., Patel V. M., 2018, Densely connected pyramid dehazing network, IEEE Int. Conf. Computer Vision Pattern Recognition, pp. 3194-3203DOI
14 
Godard C., Aodha O. M., Brostow G. J., 2017, Unsupervised monocular depth estimation with left-right consistency, IEEE Int. Conf. Computer Vision Pattern Recognition, pp. 270-279DOI
15 
Geiger A., Lenz P., Stiller C., Urtasun R., Sep. 2013, Vision meets robotics: The KITTI dataset, International Journal of Robotics Research, Vol. 32DOI
16 
Silberman N., Hoiem D., Kohli P., Fergus R., 2012, Indoor segmentation and support inference from rgbd images, European Conf. Computer VisionDOI
17 
Yu F., Chen H., Wang X., Xian W., Chen Y., Liu F., Madhavan V., Darrell T., 2020, Bdd100k: a diverse driving dataset for heterogeneous multitask learning, IEEE Conf. Computer Vision Pattern RecognitionDOI
18 
Li B., Ren W., D.Fu , Tao D., Feng D., Zeng W., Wang. Z., Aug. 2019, Benchmarking single image dehazing and beyond, IEEE Transactions on Image Processing, Vol. 28, No. 1, pp. 492-505DOI
19 
Pal D., Arora A., 2018, Removal of fog effect from highly foggy images using depth estimation and fuzzy contrast enhancement method, International Conference on Computing Communication and Automation, pp. 1-6DOI
20 
Jiwani M. A., Dandare S. N., Jun 2013, Single image fog removal using depth estimation based on blur estimation, International Journal of Scientific and Research Publications, Vol. 3, No. 6, pp. 1-6URL
21 
Huang G., Liu Z., Maaten L., Weinberger K. Q., 2017, Densely connected convolutional networks, IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261-2269DOI