Mobile QR Code QR CODE

REFERENCES

1 
Talebi H., Zhu X., Milanfar P., 2013, How to SAIF-ly boost denoising performance, IEEE Trans. Image Process., Vol. 22, No. 4, pp. 1470-1485DOI
2 
Varghese G., Wang Z., 2010, Video denoising based on a spatiotemporal Gaussian scale mixture model, IEEE Trans. Circuits Syst. Video Technol., Vol. 20, No. 7, pp. 1032-1040DOI
3 
Ozkan M. K., Erdem A. T., Sezan M. I., Tekalp A. M., 1992, Efficient multiframe Wiener restoration of blurred and noisy image sequences, IEEE Trans. Image Process., Vol. 1, pp. 453-476DOI
4 
Rosenfeld A., Kak A. C., 1982, Digital picture processing, Second edition, Academic, New York, USADOI
5 
Hwang J. J., Rhee K. H., Research, Gaussian filtering detection based on features of residuals in image forensics, in Proc. of IEEE Int. Conf. Computing & Communication Technologies, Research, Innovation, and Vision for the Future, Hanoi, Vietnam, pp. 153-157DOI
6 
Patterson H. C., Andrews C. L., Speech, Singular value decompositions and digital image processing, IEEE Trans. Acoust., Speech, Signal Process., Vol. 24, pp. 26-53DOI
7 
Lee H-C., Lee H-J., Kwon H., Liang J., 1991, Digital image noise suppression method using SVD block transform, U.S. Patent 5 010 504Google Search
8 
Chang S. G., Yu B., Vetterli M., 2000, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., Vol. 9, No. 9, pp. 1532-1546DOI
9 
Brunet D., Vrscay E. R., Wang Z., July 2009, The use of residuals in image denoising, in Proc. of 6th Int. Conf. Image Analysis and Recognition, Halifax, Canada, pp. 1-12DOI
10 
Riot P., Almansa A., Gousseau Y., Tupin F., Sept. 2016, Penalizing local correlations in the residual improves image denoising performance, in Proc. of 24th European Conf. Signal Processing, Budapest, Hungary, pp. 1867-1871DOI
11 
Koziarski M., Cyganek B. L., 2016, Deep neural image denoising, in Proc. of Int. Conf. Computer Vision and Graphics, pp. 163-173DOI
12 
Wang P., Zhang H., Patel V. M., 2017, SAR image despeckling using a convolutional neural network, IEEE Signal Process., Letters, Vol. 24, No. 2, pp. 1763-1767DOI
13 
Zhang K., Zuo W., Chen Y., Meng D., Zhang L., 2017, Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising, IEEE Trans. Image Process., Vol. 26, No. 7, pp. 3142-3155DOI
14 
Wang T., Sun M., Hu K., Boston, Dilated deep residual network for image denoising, in Proc. of IEEE 29th Int. Conf. Tools with Artificial Intelligence, Boston, MA, USA, pp. 1272-1279DOI
15 
Tian C., Xu Y., Fei L., Wang J., Luo J. Wen and N., 2019, Enhanced CNN for image denoising, IET-CAAI Trans. Intelligence Technology, Vol. 4, No. 1, pp. 17-23DOI
16 
Zhang F., Cai N., Wu J., G , Cen , Wang H., Chen X., 2018, Image denoising method based on a deep convolution neural network, IET Image Process., Vol. 12, No. 4, pp. 485-493DOI
17 
Chen C., Xu Z., 2018, Aerial-image denoising based on convolutional neural network with multi-scale residual learning approach, Information Journal, Vol. 9, No. 7, pp. 169-186DOI
18 
Tassano M., Delon J., Veit T., 2019, An analysis and implementation of the FFDNet image denoising method, Image Processing On Line Journal, Vol. 9, pp. 1-25DOI
19 
Li Y., Huang J-B., Ahuja N., Yang M. H., 2019, Joint image filtering with deep convolutional networks, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 41, No. 8, pp. 1-14DOI