Mobile QR Code QR CODE

REFERENCES

1 
Wang R., Jia W., Mao Z. H., Sclabassi R. J., Sun M., 2014, October, Cuff-free blood pressure estimation using pulse transit time and heart rate, In 2014 12th international conference on signal processing (ICSP), pp. 115-118DOI
2 
Wong M. Y. M., Poon C. C. Y., Zhang Y. T., 2009, An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects, Cardiovascular Engineering, Vol. 9, No. 1, pp. 32-38DOI
3 
Chan K. W., Hung K., Zhang Y. T., 2001, October, Noninvasive and cuffless measurements of blood pressure for telemedicine, In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 4, pp. 3592-3593DOI
4 
Simjanoska M., Gjoreski M., Gams M., Madevska Bogdanova A., 2018, Non-invasive blood pressure estimation from ECG using machine learning techniques, Sensors, Vol. 18, No. 4DOI
5 
Chowdhury M. H., Shuzan M. N. I., Chowdhury M. E., Mahbub Z. B., Uddin M. M., Khandakar A., Reaz M. B. I., 2020, Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques, Sensors, Vol. 20, No. 11, pp. 3127DOI
6 
He R., Huang Z. P., Ji L. Y., Wu J. K., Li H., Zhang Z. Q., 2016, June, Beat-to-beat ambulatory blood pressure estimation based on random forest, In 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 194-198DOI
7 
Graves A., Mohamed A. R., Hinton G., 2013 May, Speech recognition with deep recurrent neural networks, In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645-6649DOI
8 
Pascanu R., Mikolov T., Bengio Y., 2013 May, On the difficulty of training recurrent neural networks, In International conference on machine learning, pp. 1310-1318DOI
9 
Bradbury J., Merity S., Xiong C., Socher R., 2016, Quasi-recurrent neural networks, arXiv preprint arXiv:1611, Vol. 01576DOI
10 
Medina J. R., Kalita J., 2018 December, Parallel attention mechanisms in neural machine translation, In 2018 17th IEEE international conference on machine learning and applications (ICMLA), pp. 547-552DOI
11 
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Polosukhin I., 2017, Attention is all you need, Advances in neural information processing systems, Vol. 30DOI
12 
Chorowski J. K., Bahdanau D., Serdyuk D., Cho K., Bengio Y., 2015, Attention-based models for speech recognition, Advances in neural information processing systems, Vol. 28DOI
13 
Eom H., Lee D., Han S., Hariyani Y. S., Lim Y., Sohn I., Park C., 2020, End-to-end deep learning architecture for continuous blood pressure estimation using attention mechanism, Sensors, Vol. 20, No. 8, pp. 2338DOI