Mobile QR Code QR CODE

REFERENCES

1 
Newman T. B., Draper D., Puopolo K. M., Wi S., Escobar G. J., Aug. 2014, Combining Immature and Total Neutrophil Counts to Predict Early Onset Sepsis in Term and Late Preterm Newborns, Pediatric Infectious Disease Journal, Vol. 33, No. 8, pp. 798-802DOI
2 
Honda T., Uehara T., Matsumoto G., Arai S., Sugano M., Jun. 2016, Neutrophil left shift and white blood cell count as markers of bacterial infection, Clinica Chimica Acta, Vol. 457, pp. 46-53DOI
3 
van Wolfswinkel M. E., et al. , Dec. 2013, Predictive value of lymphocytopenia and the neutrophil-lymphocyte count ratio for severe imported malaria, Malaria Journal, Vol. 12, No. 1, pp. 101DOI
4 
Crawford J., Dale D. C., Lyman G. H., Jan. 2004, Chemotherapy-induced neutropenia, Cancer, Vol. 100, No. 2, pp. 228-237DOI
5 
Golan L., Yeheskely-Hayon D., Minai L., Dann E. J., Yelin D., Jun. 2012, Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry, Biomedical Optics Express, Vol. 3, No. 6, pp. 1455DOI
6 
Shih T.-C., et al. , 2011, Hemodynamic analysis of capillary in finger nail-fold using computational fluid dynamics and image estimation, Microvascular Research, Vol. 81, No. 1, pp. 68-72DOI
7 
Bourquard A., et al. , 2015, Analysis of white blood cell dynamics in nailfold capillaries, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7470-7473DOI
8 
Bourquard A., et al. , 2018, Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation, Scientific Reports, Vol. 8, No. 1, pp. 1-12DOI
9 
McKay G. N., et al. , 2020, Visualization of blood cell contrast in nailfold capillaries with high-speed reverse lens mobile phone microscopy, Biomed Opt Express, Vol. 11, No. 4, pp. 2268-2276DOI
10 
Gallego G., et al. , Jan. 2022, Event-Based Vision: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 1, pp. 154-180DOI
11 
Perot E., de Tournemire P., Nitti D., Masci J., Sironi A., 2020, Learning to Detect Objects with a 1 Megapixel Event Camera, in Advances in Neural Information Processing System, Vol. 33, pp. 16639-16652sURL
12 
Wan J., et al. , Apr. 2021, Event-Based Pedestrian Detection Using Dynamic Vision Sensors, Electronics (Basel), Vol. 10, No. 8, pp. 888DOI
13 
Cannici M., Ciccone M., Romanoni A., Matteucci M., Jun. 2019, Asynchronous Convolutional Networks for Object Detection in Neuromorphic Cameras, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1656-1665DOI
14 
Belbachir A. N., Schraml S., Nowakowska A., Jun. 2011, Event-driven stereo vision for fall detection, in CVPR 2011 WORKSHOPS, pp. 78-83DOI
15 
Wang Y., et al. , Jun. 2019, EV-Gait: Event-Based Robust Gait Recognition Using Dynamic Vision Sensors, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6351-6360DOI
16 
Mueggler E., Huber B., Scaramuzza D., Sep. 2014, Event-based, 6-DOF pose tracking for high-speed maneuvers, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2761-2768DOI
17 
Hariyani Y. S., Eom H., Park C., 2020, DA-Capnet: Dual Attention Deep Learning Based on U-Net for Nailfold Capillary Segmentation, IEEE Access, Vol. 8, pp. 10543-10553DOI