Mobile QR Code QR CODE

REFERENCES

1 
Bijalwan, V., Semwal, V.B., Singh, G. and Mandal, T.K. (2022). HDL-PSR: Modelling Spatio-Temporal Features Using Hybrid Deep Learning Approach for Post-Stroke Rehabilitation. Neural Processing Letters.URL
2 
Delvigne, V., Facchini, A., Wannous, H., Dutoit, T., Ris, L. and Vandeborre, J.-P. (2022). A Saliency based Feature Fusion Model for EEG Emotion Estimation. arXiv:2201.03891 [cs]. [online] Available at: \url{https://arxiv.org/abs/2201.03891} [Accessed 8 Mar. 2022].URL
3 
Ertuğrul, ö.F. and Akıl, M.F. (2022). Detecting hemorrhage types and bounding box of hemorrhage by deep learning. Biomedical Signal Processing and Control, 71, p. 103085.URL
4 
Gan, S., Zhuang, Q. and Gong, B. (2022). Human-computer interaction-based interface design of intelligent health detection using PCANet and multi-sensor information fusion. Computer Methods and Programs in Biomedicine, 216, p. 106637.URL
5 
Ghosh, A., Umer, S., Khan, M.K., Rout, R.K. and Dhara, B.C. (2022). Smart sentiment analysis system for pain detection using cutting edge techniques in a smart healthcare framework. Cluster Computing.URL
6 
Heyse, J., Carlier, S., Verhelst, E., Vander Linden, C., De Backere, F. and De Turck, F. (2022). From Patient to Musician: A Multi-Sensory Virtual Reality Rehabilitation Tool for Spatial Neglect. Applied Sciences, [online] 12(3), p. 1242.URL
7 
Kim, J.S., Kim, M.-G. and Pan, S.B. (2021). A study on implementation of real-time intelligent video surveillance system based on embedded module. EURASIP Journal on Image and Video Processing, 2021(1).URL
8 
Liang, R., Yip, J., Fan, Y., Cheung, J.P.Y. and To, K.-T.M. (2022). Electromyographic Analysis of Paraspinal Muscles of Scoliosis Patients Using Machine Learning Approaches. International Journal of Environmental Research and Public Health, [online] 19(3), p. 1177.URL
9 
Ma, W. and Xu, F. (2020). Study on computer vision target tracking algorithm based on sparse representation. Journal of Real-Time Image Processing, 18(2), pp. 407-418.URL
10 
Mohamed, N.A., Zulkifley, M.A., Kamari, N.A.M. and Kadim, Z. (2022). Symmetrically Stacked Long Short-Term Memory Networks for Fall Event Recognition Using Compact Convolutional Neural Networks-Based Tracker. Symmetry, [online] 14(2), p. 293.URL
11 
Mokri, C., Bamdad, M. and Abolghasemi, V. (2022). Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques. Medical & Biological Engineering & Computing.URL
12 
Oh, S. and Kim, D.-K. (2022). Comparative Analysis of Emotion Classification Based on Facial Expression and Physiological Signals Using Deep Learning. Applied Sciences, [online] 12(3), p. 1286.URL
13 
Park, C., An, Y., Yoon, H., Park, I., Kim, K., Kim, C. and Cha, Y. (2022). Comparative accuracy of a shoulder range motion measurement sensor and Vicon 3D motion capture for shoulder abduction in frozen shoulder. Technology and Health Care, [online] 30(S1), pp. 251-257.URL
14 
Qiu, Y., Wang, J., Jin, Z., Chen, H., Zhang, M. and Guo, L. (2022). Pose-guided matching based on deep learning for assessing quality of action on rehabilitation training. Biomedical Signal Processing and Control, 72, p. 103323.URL
15 
Rahman, Z.U., Ullah, S.I., Salam, A., Rahman, T., Khan, I. and Niazi, B. (2022). Automated Detection of Rehabilitation Exercise by Stroke Patients Using 3-Layer CNN-LSTM Model. Journal of Healthcare Engineering, 2022, pp. 1-12.URL
16 
Schlereth, M., Stromer, D., Breininger, K., Wagner, A., Tan, L., Maier, A. and Knieling, F. (2022). Automatic Classification of Neuromuscular Diseases in Children Using Photoacoustic Imaging. arXiv:2201.11630 [cs, eess]. [online] Available at: \url{https://arxiv.org/abs/2201.11630} [Accessed 8 Mar. 2022].URL
17 
Sun, W. and Mo, C. (2020). High-speed real-time augmented reality tracking algorithm model of camera based on mixed feature points. Journal of Real-Time Image Processing.URL
18 
Xiao, B., Chen, L., Zhang, X., Li, Z., Liu, X., Wu, X. and Hou, W. (2022). Design of a virtual reality rehabilitation system for upper limbs that inhibits compensatory movement. Medicine in Novel Technology and Devices, 13, p. 100110.URL
19 
Yue, S. (2020). Human motion tracking and positioning for augmented reality. Journal of Real-Time Image Processing. J Real-Time Image Proc 18, 357-368 (2021)\colorbox{color-5}{\textcolor{color-8}{.}}URL
20 
Zhang, X., Xu, Z. and Liao, H. (2022). Human motion tracking and 3D motion track detection technology based on visual information features and machine learning. Neural Computing and Applications.URL
21 
Boukhennoufa, I., Zhai, X., Utti, V., Jackson, J. and McDonald-Maier, K.D. (2022). Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomedical Signal Processing and Control, 71, p. 103197.URL
22 
Costa, F., Janela, D., Molinos, M., Lains, J., Francisco, G.E., Bento, V. and Dias Correia, F. (2022). Telerehabilitation of acute musculoskeletal multi-disorders: prospective, single-arm, interventional study. BMC Musculoskeletal Disorders, 23(1).URL
23 
Igwesi-Chidobe, C.N., Bishop, A., Humphreys, K., Hughes, E., Protheroe, J., Maddison, J. and Bartlam, B. (2020). Implementing patient direct access to musculoskeletal physiotherapy in primary care: views of patients, general practitioners, physiotherapists and clinical commissioners in England. Physiotherapy.URL
24 
Ratcliffe, J., Soave, F., Bryan-Kinns, N., Tokarchuk, L. and Farkhatdinov, I. (2021). Extended Reality (XR) Remote Research: a Survey of Drawbacks and Opportunities. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.URL
25 
Tack, C. (2019). Artificial intelligence and machine learning{\textbar} applications in musculoskeletal physiotherapy. Musculoskeletal Science and Practice, 39, 164-169.URL
26 
Li, Y., Chen, R., Niu, X., Zhuang, Y., Gao, Z., Hu, X., & El-Sheimy, N. (2021). Inertial Sensing Meets Machine Learning: Opportunity or Challenge?. IEEE Transactions on Intelligent Transportation Systems.URL
27 
Panicker, S. S., & Gayathri, P. (2019). A survey of machine learning techniques in physiology based mental stress detection systems. Biocybernetics and Biomedical Engineering, 39(2), 444-469.URL
28 
Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., & Fortino, G. (2022). Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information Fusion, 80, 241-265.URL
29 
Zad, S., Heidari, M., Jones, J.H.J. and Uzuner, O. (2021). Emotion Detection of Textual Data: An Interdisciplinary Survey. \textit{2021 IEEE World AI IoT Congress(AIIoT)}.doi:10.1109/aiiot52608.2021.9454192.DOI
30 
Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 1-19.URL
31 
Lim, J. Z., Mountstephens, J., & Teo, J. (2020). Emotion recognition using eye-tracking: taxonomy, review and current challenges. Sensors, 20(8), 2384.URL
32 
Saxena, A., Khanna, A., & Gupta, D. (2020). Emotion recognition and detection methods: A comprehensive survey. Journal of Artificial Intelligence and Systems, 2(1), 53-79.URL
33 
Davoli, A., Guerzoni, G., & Vitetta, G. M. (2021). Machine learning and deep learning techniques for colocated MIMO radars: A tutorial overview. IEEE Access,9,33704-33755.URL
34 
Ali, O., Ishak, M. K., & Bhatti, M. K. L. (2021). Early COVID-19 symptoms identification using hybrid unsupervised machine learning techniques. Computers, Materials, and Continua, 747-766.URL
35 
Peiffer-Smadja, N., Rawson, T. M., Ahmad, R., Buchard, A., Georgiou, P., Lescure, F. X., ... & Holmes, A. H. (2020). Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clinical Microbiology and Infection, 26(5), 584-595.URL
36 
Kelly, D., Hoang, T. N., Reinoso, M., Joukhadar, Z., Clements, T., & Vetere, F. (2018). Augmented reality learning environment for physiotherapy education. Physical Therapy Reviews, 23(1), 21-28.URL
37 
Fahle, S., Prinz, C., & Kuhlenkötter, B. (2020). Systematic review on machine learning (ML) methods for manufacturing processes-Identifying artificial intelligence (AI) methods for field application. Procedia CIRP, 93, 413-418.URL
38 
De Filippis, R., Carbone, E. A., Gaetano, R., Bruni, A., Pugliese, V., Segura-Garcia, C., & De Fazio, P. (2019). Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatric disease and treatment, 15, 1605.URL
39 
Ngiam, K. Y., & Khor, W. (2019). Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 20(5), e262-e273.URL
40 
Angehrn, Z., Haldna, L., Zandvliet, A. S., Gil Berglund, E., Zeeuw, J., Amzal, B., ... & Heckman, N. M. (2020). Artificial intelligence and machine learning applied at the point of care. Frontiers in Pharmacology, 11, 759.URL