Mobile QR Code QR CODE

REFERENCES

1 
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ``Yolov4: Optimal speed and accuracy of object detection,'' arXiv preprint arXiv:2004.10934, 2020.DOI
2 
S. Ren, K. He, R. Girshick, and J. Sun, ``Faster r-cnn: Towards real- time object detection with region proposal networks,'' Advances in neural information processing systems, vol. 28, pp. 91-99, 2015.DOI
3 
Z. Cai and N. Vasconcelos, ``Cascade r-cnn: Delving into high quality object detection,'' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6154-6162.DOI
4 
J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, ``Libra r-cnn: Towards balanced learning for object detection,'' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 821-830.DOI
5 
Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.DOI
6 
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, ``Ssd: Single shot multibox detector,'' in European conference on computer vision. Springer, 2016, pp. 21-37.DOI
7 
Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling, ``M2det: A single-shot object detector based on multi-level feature pyramid network,'' in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 9259-9266.DOI
8 
P. Purkait, C. Zhao, and C. Zach, ``Spp-net: Deep absolute pose regression with synthetic views,'' arXiv preprint arXiv:1712.03452, 2017.DOI
9 
S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, ``Path aggregation network for instance segmentation,'' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8759-8768.DOI
10 
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, ``Microsoft coco: Common objects in context,'' in European conference on computer vision. Springer, 2014, pp. 740-755.DOI
11 
Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, ``A unified multi-scale deep convolutional neural network for fast object detection,'' in European conference on computer vision. Springer, 2016, pp. 354-370.DOI
12 
C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, ``Dssd: Deconvolu- tional single shot detector,'' arXiv preprint arXiv:1701.06659, 2017.DOI
13 
T. Kong, A. Yao, Y. Chen, and F. Sun, ``Hypernet: Towards accurate region proposal generation and joint object detection,'' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 845- 853.DOI
14 
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, ``Feature pyramid networks for object detection,'' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117-2125.DOI
15 
Y. Liu, P. Sun, N. Wergeles, and Y. Shang, ``A survey and performance evaluation of deep learning methods for small object detection,'' Expert Systems with Applications, p. 114602, 2021.DOI
16 
R. Girshick, J. Donahue, T. Darrell, and J. Malik, ``Rich feature hierarchies for accurate object detection and semantic segmentation,'' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580-587.DOI
17 
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, ``Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,'' IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848, 2017.DOI
18 
F. Yu and V. Koltun, ``Multi-scale context aggregation by dilated convolutions,'' arXiv preprint arXiv:1511.07122, 2015.DOI
19 
Y. Li, Y. Chen, N. Wang, and Z. Zhang, ``Scale-aware trident networks for object detection,'' in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6054-6063.DOI
20 
B. Singh and L. S. Davis, ``An analysis of scale invariance in object detection snip,'' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3578-3587.DOI
21 
B. Singh, M. Najibi, and L. S. Davis, ``Sniper: Efficient multi-scale training,'' arXiv preprint arXiv:1805.09300, 2018.DOI
22 
M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho, ``Augmentation for small object detection,'' arXiv preprint arXiv:1902.07296, 2019.DOI
23 
B. Zoph, E. D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, and Q. V. Le, ``Learning data augmentation strategies for object detection,'' in European Conference on Computer Vision. Springer, 2020, pp. 566-583.DOI
24 
A. Shrivastava, A. Gupta, and R. Girshick, ``Training region-based object detectors with online hard example mining,'' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 761- 769.DOI
25 
Y. Cao, K. Chen, C. C. Loy, and D. Lin, ``Prime sample attention in object detection,'' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 583-11 591.DOI
26 
K. Chen, J. Li, W. Lin, J. See, J. Wang, L. Duan, Z. Chen, C. He, and J. Zou, ``Towards accurate one-stage object detection with ap-loss,'' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5119-5127.DOI
27 
Q. Qian, L. Chen, H. Li, and R. Jin, ``Dr loss: Improving object detection by distributional ranking,'' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12 164-12 172.DOI
28 
P. Dollár, M. Singh, and R. Girshick, ``Fast and accurate model scaling,'' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 924-932.DOI
29 
M. Tan and Q. Le, ``Efficientnet: Rethinking model scaling for convolutional neural networks,'' in International Conference on Machine Learning. PMLR, 2019, pp. 6105-6114.DOI
30 
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ``Scaled-yolov4: Scaling cross stage partial network,'' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13 029-13 038.DOI
31 
M. Tan, R. Pang, and Q. V. Le, ``Efficientdet: Scalable and efficient object detection,'' in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10 781-10 790.DOI
32 
D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu, T. Peng, J. Zheng, X. Wang, Y. Zhang et al. ,``Visdrone-det2019: The vision meets drone ob- ject detection in image challenge results,'' in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0-0.DOI
33 
A. Newell, K. Yang, and J. Deng, ``Stacked hourglass networks for human pose estimation,'' in European conference on computer vision. Springer, 2016, pp. 483-499.DOI
34 
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ``Cbam: Convolutional block attention module,'' in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3-19.DOI
35 
J. Hu, L. Shen, and G. Sun, ``Squeeze-and-excitation networks,'' in Pro- ceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132-7141.DOI
36 
J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, ``Bam: Bottleneck attention module,'' arXiv preprint arXiv:1807.06514, 2018.DOI
37 
D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang, Q. Huang, and Q. Tian, ``The unmanned aerial vehicle benchmark: Object detection and tracking,'' in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 370-386.DOI
38 
M.-R. Hsieh, Y.-L. Lin, and W. H. Hsu, ``Drone-based object counting by spatially regularized regional proposal network,'' in Proceedings of the IEEE international conference on computer vision, 2017, pp. 4145-4153.DOI
39 
Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.DOI