Mobile QR Code QR CODE

REFERENCES

1 
A. Partika, A. D. Johnson, D. A. Phillips, et al. “Dual language supports for dual language learners? Exploring preschool classroom instructional supports for DLLs’ early learning outcomes”. Early Childhood Research Quarterly, vol. 56, pp. 124-138, 2021.DOI
2 
S. M. Satagalieva. “The trends for modern libraries and building the strategy of library and information education in the Republic of Kazakhstan”. Scientific and Technical Libraries, 2021vol. 3, pp. 58-70, 2021.DOI
3 
M. Zhang, M. Zhang, G. Tian, et al. “A Home Service-Oriented Question Answering System with High Accuracy and Stability”. IEEE Access, 2019, pp. 1-3, 2019.DOI
4 
C. Yin, J. Tang, Z. Xu, et al. “Memory Augmented Deep Recurrent Neural Network for Video Question Answering.” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1-9, 2019.DOI
5 
Q. Cao, X. Liang, B. Li, et al. “Interpretable Visual Question Answering by Reasoning on Dependency Trees”. IEEE transactions on pattern analysis and machine intelligence, vol. 43(3), pp. 887-901, 2021.DOI
6 
J. Hong, J. Fu, Y. Uh, et al. “Exploiting hierarchical visual features for visual question answering”. Neurocomputing, vol. 351, pp. 187-195, 2019.DOI
7 
S. Garg, R. Srivastava. “Object sequences: encoding categorical and spatial information for a yes/no visual question answering task”. Computer Vision, IET, vol. 12(8), pp. 1141-1150, 2018.DOI
8 
A. A. Yusuf, F. Chong, M. Xianling, “Evaluation of graph convolutional networks performance for visual question answering on reasoning datasets”. Multimedia Tools and Applications, pp. 1-10, 2022.DOI
9 
T. M. Le, V. Le, S. Venkatesh, et al. “Hierarchical Conditional Relation Networks for Multimodal Video Question Answering”. International Journal of Computer Vision, vol. 8, pp. 1-24, 2021.DOI
10 
F. Chong, A. A. Yusuf, M. Xianling. “An analysis of graph convolutional networks and recent datasets for visual question answering”. Artificial Intelligence Review, pp. 1-24, 2022.DOI
11 
D. Sharma, S. Purushotham, C. K. Reddy. “MedFuseNet: Anattention-based multimodal deep learning model for visual question answering in the medical domain”. Scientific Reports, vol. 11(1), pp. 1-18, 2021.DOI
12 
L. Zhang, X. Yang, S. Li, et al. “Answering medical questions in Chinese using automatically mined knowledge and deep neural networks: an end-to-end solution”. BMC Bioinformatics, vol. 23(1), pp. 1-32, 2022.DOI
13 
Y. P. Nie, Y. Han, J. M. Huang, et al. “Attention-based encoder-decoder model for answer selection in question answering”. Frontiers of Information Technology & Electronic Engineering, vol. 18(4), pp. 535-544, 2019.DOI
14 
M. Shi, “Knowledge Graph Question and Answer System for Mechanical Intelligent Manufacturing Based on Deep Learning”. Mathematical Problems in Engineering, vol. 2, pp. 1-8, 2021.DOI
15 
A. Al-Sadi, M. Al-Ayyoub, Y. Jararweh, et al. “Visual Question Answering in the Medical Domain Based on Deep Learning Approaches: A Comprehensive Study”. Pattern Recognition Letters, vol. 150(2), pp. 1-4, 2021.DOI
16 
M. Jangra, S. K. Dhull, K. K. Singh “ECG arrhythmia classification using modified visual geometry group network (mVGGNet)”. Journal of Intelligent and Fuzzy Systems, vol. 38(5), pp. 1-15, 2020.URL
17 
Y. Chen, Y. Mai, J. Xiao, et al. “Improving the Antinoise Ability of DNNs via a Bio-Inspired Noise Adaptive Activation Function Rand Softplus”. Neural Computation, vol. 31(6), pp. 1215-1233, 2019.DOI
18 
Y. Zhang, B. Mu, H. Zheng. “Link Between and Comparison and Combination of Zhang Neural Network and Quasi-Newton BFGS Method for Time-Varying Quadratic Minimization”. IEEE Transactions on Cybernetics, vol. 43(2), pp. 490-503, 2018.DOI
19 
Y. Fu, Z. Liang, S. You. “Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution”. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, vol. 99, pp. 1-7, 2021.DOI
20 
S. Park, J. Jang, S. Kim, et al. “Memory-Augmented Neural Networks on FPGA for Real-Time and Energy-Efficient Question Answering”. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 99, pp. 1-14, 2020.DOI
21 
P. Y. Wang, C. T. Chen, J. W. Su, et al. “Deep Learning Model for House Price Prediction Using Heterogeneous Data Analysis Along with Joint Self-Attention Mechanism”. IEEE Access, vol. 99, pp. 1-9, 2021.DOI
22 
X. Li, J. Song, L. Gao, et al. “Beyond RNNs: Positional Self-Attention with Co-Attention for Video Question Answering”. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8658-8665, 2019.DOI
23 
Y. Cheng, L. Yao, G. Xiang, et al. “Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism”. IEEE Access, vol. 8, pp. 134964-134975, 2020.DOI
24 
S. Pendurkar, S. Kolpekwar, S. Dhoot, et al. “Attention Based Multi-Modal Fusion Architecture for Open-Ended Video Question Answering Systems”. Procedia Computer Science, vol. 171, pp. 446-455, 2020.DOI
25 
C. Zhao, S. Wang, D. Li, et al. “Cross-domain sentiment classification via parameter transferring and attention sharing mechanism”. Information Sciences, vol. 578, pp. 281-296, 2021.DOI