Mobile QR Code QR CODE

REFERENCES

1 
G. Rjoub, J. Bentahar, O. A. Wahab, “Big Trust Scheduling: trust-aware big data task scheduling approach in cloud computing environments”. Future generation computer systems, vol. 110, pp. 1079-1097, 2019.DOI
2 
P. Pirozmand, A. A. R. Hosseinabadi, M. Farrokhzad, et al. “Multi - objective hybrid genetic algorithm for task scheduling problem in cloud computing”. Neural computing & applications, 2022, vol. 34, pp. 2497-2497, 2022.DOI
3 
K. Li, L. Jia, X. Shi, “A Study into Cloud Computing Task Scheduling Based on BIAS Algorithm.” Journal of Internet Technology, vol. pp. 1375-1383, 2021.URL
4 
M. Zeedan, G. Attiya, N. El-Fishawy, “A Hybrid Approach for Task Scheduling Based Particle Swarm and Chaotic Strategies in Cloud Computing Environment”. Parallel Processing Letters, vol. 32, pp. 2250001-2250001, 2022.DOI
5 
S. A. Alsaidy, A. D. Abbood, M. A. Sahib, “Heuristic initialization of PSO task scheduling algorithm in cloud computing”. Journal of King Saud University - Computer and Information Sciences, vol. 34, pp. 2370-2382, 2020.DOI
6 
Bulchandani N., Chourasia U., Agrawal S., et al. “A Survey on task scheduling algorithms in cloud computing.” vol. 9, pp. 460-468, 2020.URL
7 
A. Sv, B. Pk, C. Vmax, et al. “Hybrid electro search with genetic algorithm for task scheduling in cloud computing – ScienceDirect”. Ain Shams Engineering Journal, vol. 12, pp. 631-639, 2020.DOI
8 
Z. Wu, J. Xiong, “A Novel Task-Scheduling Algorithm of Cloud Computing Based on Particle Swarm Optimization”. International Journal of Gaming and Computer-Mediated Simulations, vol. 13, pp. 1-15, 2021.URL
9 
N. Smith. “Online training is the future and evolving all the time”. The Lighting Journal, vol. 85, pp. 50-50, 2020.URL
10 
M. Majumder, U. Gaur, K. Singh, et al., “Impact of COVID-19 pandemic on radiology education, training, and practice: A narrative review”. World Journal of Radiology, vol. 13, pp. 354-370, 2021.DOI
11 
S. Lu, R. Gu, H. Jin, et al. “QoS-Aware Task Scheduling in Cloud-Edge Environment”. IEEE Access, vol. 9, pp. 56496 – 56505, 2021.DOI
12 
A. Oliveros. “Design and Development an Interactive On-the-Job Training Monitoring and Help Desk System with SMS for College of Information and Communication Technology”. Journal of Computer and Communications, vol. 10, pp. 72-89, 2022.DOI
13 
J. Ge, D. Yu, Y. Fang. “Multi-dimensional QoS Cloud Computing Task Scheduling Strategy Based on Improved Ant Colony Algorithm”. Journal of Physics: Conference Series, vol. 1848, pp. 012031-012031, 2021.DOI
14 
F. Dahan. “An Effective Multi-Agent Ant Colony Optimization Algorithm for QoS-Aware Cloud Service Composition”. IEEE Access, vol. 9, pp. 17196-17207, 2021.DOI
15 
F. Liu, Z. Ma, Wang B., et al. “A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data Center”. IEEE Access, vol. 8, pp. 53-67, 2020.DOI
16 
K. Karmakar, R. K. Das, S. Khatua. “An ACO-based multi-objective optimization for cooperating VM placement in cloud data center”. The Journal of Supercomputing, vol. 78, pp. 3093-3121, 2021.DOI
17 
K. Nithyanandakumari, “Assessment of Ant Colony Optimization Algorithm for DAG Task Scheduling in Cloud Computing”. International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, pp. 5278-5286, 2020.URL
18 
K. Jaiswal, S. Sobhanayak, A. K. Turuk, et al. “Container-based task scheduling for edge computing in IoT-cloud environment using improved HBF optimization algorithm. International.” Journal of Embedded Systems, vol. 13, pp. 85-85, 2020.DOI
19 
J. Ge, D. Yu, Y. Fang. “Multi-dimensional QoS Cloud Computing Task Scheduling Strategy Based on Improved Ant Colony Algorithm”. Journal of Physics: Conference Series, vol. 1848, pp. 012031-012031, 2021.DOI