Mobile QR Code QR CODE

REFERENCES

1 
T. Nguyen and M. Yoo, ``Fusing LIDAR sensor and RGB camera for object detection in autonomous vehicle with fuzzy logic approach,'' in International Conference on Information Networking, IEEE Computer Society, Jan. 2021, pp. 788-791.URL
2 
Han’guk T’ongsin Hakhoe, IEEE Communications Society, Denshi Jōhō Tsūshin Gakkai (Japan). Tsūshin Sosaieti, and Institute of Electrical and Electronics Engineers, ICTC 2019: the 10th International Conference on ICT Convergence: “ICT Convergence Leading the Autonomous Future”: October 16-18, 2019, Ramada Plaza Hotel, Jeju Island, KoreaURL
3 
LeCun, ``Lenet-5.'' convolutional neural networks,URL
4 
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ``Densely Connected Convolutional Networks.'' [Online]. Available: https://github.com/liuzhuang13/DenseNet.URL
5 
A. Van Den Oord, S. Dieleman, and B. Schrauwen, ``Deep content-based music recommendation.''URL
6 
R. Girshick, ``Fast R-CNN.'' [Online]. Available: https://github.com/rbgirshickURL
7 
J. Long, E. Shelhamer, and T. Darrell, ``Fully Convolutional Networks for Semantic Segmentation.''URL
8 
W. Bouzidi, S. Bouaafia, M. A. Hajjaji, and L. M. Bergasa, ``Enhanced U-Net Approach: Semantic Segmentation for Self-Driving Cars Applications.''URL
9 
H. Pan, Y. Hong, W. Sun, and Y. Jia, ``Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes,'' IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 3448-3460, Mar. 2023, doi: 10.1109/TITS.2022.3228042.DOI
10 
L. Bartolomei, L. Teixeira, and M. Chli, ``Perception-aware path planning for UAVs using semantic segmentation,'' in IEEE International Conference on Intelligent Robots and Systems, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 5808-5815. doi: 10.1109/IROS45743.2020.9341347.DOI
11 
M. Hua, Y. Nan, and S. Lian, ``Small Obstacle Avoidance Based on RGB-D Semantic Segmentation.''URL
12 
O. Ronneberger, P. Fischer, and T. Brox, ``U-Net: Convolutional Networks for Biomedical Image Segmentation,'' May 2015, [Online]. Available: http://arxiv.org/abs/1505.04597URL
13 
V. Badrinarayanan, A. Kendall, and R. Cipolla, ``SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,'' IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 12, pp. 2481-2495, Dec. 2017, doi: 10.1109/TPAMI.2016.2644615.DOI
14 
[14] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation.” [Online]. Available: https://github.com/SimJeg/FC-DenseNet Article(CrossRefLink)URL
15 
G. J. Brostow, J. Fauqueur, and R. Cipolla, ``Semantic object classes in video: A high-definition ground truth database,'' Pattern Recognit Lett, vol. 30, no. 2, pp. 88-97, Jan. 2009, doi: 10.1016/j.patrec.2008.04.005. Article(CrossRefLink)DOI
16 
B. Lodhi and J. Kang, ``Multipath-DenseNet: A Supervised ensemble architecture of densely connected convolutional networks,'' Inf Sci (N Y), vol. 482, pp. 63-72, May 2019, doi: 10.1016/j.ins.2019.01.012.DOI
17 
P. Hu et al., ``Real-Time Semantic Segmentation with Fast Attention,'' IEEE Robot Autom Lett, vol. 6, no. 1, pp. 263-270, Jan. 2021, doi: 10.1109/LRA.2020.3039744.DOI
18 
X. Li et al., ``Semantic Flow for Fast and Accurate Scene Parsing.'' [Online]. Available: https://github.com/lxtGH/SFSegNets.URL
19 
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, ``Pyramid Scene Parsing Network.''URL
20 
F. Yu and V. Koltun, ``Multi-Scale Context Aggregation by Dilated Convolutions,'' Nov. 2015,URL
21 
K. He, X. Zhang, S. Ren, and J. Sun, ``Deep Residual Learning for Image Recognition.'' [Online]. Available: http://image-net.org/challenges/LSVRC/2015URL
22 
L. Deng and X. Li, ``Machine learning paradigms for speech recognition: An overview,'' IEEE Trans Audio Speech Lang Process, vol. 21, no. 5, pp. 1060-1089, 2013, doi: 10.1109/TASL.2013.2244083.DOI