Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
B. L. Zhang, X. M. Shi, and F. R. Liang, Theory and Practice of Acupuncture & Moxibustion (in Chinese), China Press of Traditional Chinese Medicine, 2019.URL
2 
R. C. Deo, ``Machine learning in medicine,'' Circulation, vol. 132, no. 20, pp. 1920-1930, 2015.DOI
3 
J. Goecks, V. Jalili, L. M. Heiser, and J. W. Gray, ``How machine learning will transform biomedicine,'' Cell, vol. 181, no. 1, pp. 92-101, 2020.DOI
4 
J. Liang, M. Y. Ming, C. B. Wang, X. L. Lv, Z. R. Sun, and H. N. Yin, ``Research progress in the integration of machine learning and the science of acupuncture and moxibustion,'' Acupuncture Research, vol. 46, no. 6, pp. 460-463, 2021.DOI
5 
X. Y. Yang, Y. Tu, and D. M. Duan, ``Application of curative effect prediction method in acupuncture treatment of depression,'' Journal of Beijing University of traditional Chinese Medicine (in Chinese), vol. 31, no. 5, pp. 355-357, 2008.URL
6 
M. Fei and P. Xv, ``Estimation of the curative effects of acupuncture on heroin dependence by neural networks,'' Lishizhen Medicine and Materia Medica Research (in Chinese), vol. 19, no. 12, pp. 2974-2975, 2008.URL
7 
W. S. Hao, X. S. Zhu, X. R. Wang, H. Y. Yang, Z. H. Wang, and Y. J. Zhang, ``Biochemical index variation prediction during electroacupuncture analgesia using ANFIS method,'' Journal of Shanghai Jiaotong University (in Chinese), vol. 42, no. 2, pp. 177-180, 2008.URL
8 
Q. Gan, R. Wu, M. Nakata, and Q. W. Ge, ``A proposal of support system for acupuncture and moxibustion treatment in traditional Chinese medicine,'' IEICE Transactions on Information and Systems, vol. 120, no. 245, pp. 40-43, 2020.URL
9 
I. Sutskever, O. Vinyals, and Q. V. Le, ``Sequence to sequence learning with neural networks,'' Advances in Neural Information Processing Systems, pp. 1-9, 2014.DOI
10 
A. Hyodo, Traditional Chinese Medicine Meridians and Acupoint Textbooks (in Japanese), Shinsei Publishing, 2012.URL
11 
M. E. Maron and J. L. Kuhns, ``On relevance, probabilistic indexing and information retrieval,'' Journal of the ACM (JACM), vol. 7, no. 3, pp. 216-244, 1960.DOI
12 
T. Cover and P. Hart, ``Nearest neighbor pattern classification,'' IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, 1967.DOI
13 
L. Breiman and J. H. Friedman, Classification and Regression Trees, Routledge, 2017.URL
14 
T. M. Cover, ``Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,'' IEEE Transactions on Electronic Computers, vol. 14, no. 3, pp. 326-334, 1965.DOI
15 
W. S. McCulloch and W. Pitts, ``A logical calculus of the ideas immanent in nervous activity,'' The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133, 1943.DOI
16 
M. Frean, ``The upstart algorithm: A method for constructing and training feedforward neural networks,'' Neural Computation, vol. 2, no. 2, pp. 198-209, 2014.DOI
17 
Y. Kim, ``Convolutional neural networks for sentence classification,'' Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746-1751, 2014.DOI
18 
H. Rezatofighi, N. Tsoi, J. Y. Gwak, A. Sadeghian, I. Reid, and S. Savarese, ``Generalized intersection over union: A metric and a loss for bounding box regression,'' Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658-666, 2019.DOI
19 
Z. Luo, The Classification Research of the Symptomatic Units of TCM (in Chinese), M.S. Thesis, Shandong University of Traditional Chinese Medicine, 2012.URL
20 
R. M. Yan, Essence of Yan Runming's 60 Years of Clinical Experience in Acupuncture and Moxibustion (in Chinese), China Press of Traditional Chinese Medicine, 2013.URL
21 
S. Z. Gao and J. Yang, Therapeutics of Acupuncture and Moxibustion (in Chinese), China Press of Traditional Chinese Medicine, 2016.URL
22 
M. L. Zhang and Z. H. Zhou, ``A review on multilabel learning algorithms,'' IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 8, pp. 1819-1837, 2013.DOI
23 
J. Nam, E. L. Mencía, H. J. Kim, and J. Fürnkranz, ``Maximizing subset accuracy with recurrent neural networks in multi-label classification,'' Advances in Neural Information Processing Systems, vol. 30, pp. 5413-5423, 2017.URL
24 
P. C. Yang, X. Sun, W. Li, S. Ma, W. Wu, and H. F. Wang, ``SGM: Sequence qeneration model for multi-label classification,'' Proc. of the 27th International Conference on Computational Linguistics, pp. 3915-3926, 2018.DOI
25 
W. Liao, Y. Wang, Y. Yin, X. Zhang, and P. Ma, ``Improved sequence generation model for multilabel classification via CNN and initialized fully connection,'' Neurocomputing, vol. 382, pp. 188-195, 2020.DOI
26 
K. Greff, R. K. Srivastava, J. Koutník, B. R. Steune- brink, and J. Schmidhuber, ``LSTM: A search space Odyssey,'' IEEE Transactions on Neural Networks & Learning Systems, vol. 28, no. 10, pp. 2222-2232, 2016.DOI
27 
K. Saito, Deep Learning from Scratch 2 (in Japanese), O'Reilly Japan, Inc., 2018.URL