Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
R. A. Saeed, M. Omri, S. Abdel-Khalek, E. S. Ali, and M. F. Alotaibi, ``Optimal path planning for drones based on swarm intelligence algorithm,'' Neural Computing and Applications, vol. 34, no. 12, pp. 10133-10155, 2022.DOI
2 
D. Hong, S. Lee, Y. H. Cho, D. Baek, J. Kim, and N. Chang, ``Energy-efficient online path planning of multiple drones using reinforcement learning,'' IEEE Transactions on Vehicular Technology, vol. 70, no. 10, pp. 9725-9740, 2021.DOI
3 
Q. Luo, J. Li, and H. Zhang, ``Drag coefficient modeling of heterogeneous connected platooning vehicles via BP neural network and PSO algorithm,'' Neurocomputing, vol. 484, no. 5, pp. 117-127, 2022.DOI
4 
S. R. P. Purba, H. S. Amarilies, N. L. Rachmawati, and A. A. N Perwira Redi, ``Implementation of particle swarm optimization algorithm in cross-docking distribution problem,'' Acta Informatica Malaysia, vol. 5, no. 1, pp. 16-20, 2021.DOI
5 
K. Chen, F. Zhou, and A. Liu, ``Chaotic dynamic weight particle swarm optimization for numerical function optimization,'' Knowledge-Based Systems, vol. 139, no. 1, pp. 23-40, 2018.DOI
6 
J. Wang, Q. Xu, and Q. Li, ``Some remarks on the deterministic particle swarm optimization algorithm,'' Mathematical Methods in the Applied Sciences, vol. 41, no. 5, pp. 1870-1875, 2018.DOI
7 
K. Shen, R. Shivgan, J. Medina, Z. Dong, and R. Rojas-Cessa, ``Multidepot drone path planning with collision avoidance,'' IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16297-16307, 2022.DOI
8 
Y. Wu, K. H. Low, B. Pang, and Q. Tan, ``Swarm-based 4D path planning for drone operations in urban environments,'' IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 7464-7479, 2021.DOI
9 
S. Hayat, E. Yanmaz, and C. Bettstetter, ``Multi-objective drone path planning for search and rescue with quality-of-service requirements,'' Autonomous Robots, vol. 44, no. 7, pp. 1183-1198, 2020.DOI
10 
H. Huang, A. V. Savkin, and C. Huang, ``Reliable path planning for drone delivery using a stochastic time-dependent public transportation network,'' IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 4941-4950, 2020.DOI
11 
Y. Zhang, L. L. Li, H. C. Lin, Z. Ma, and J. Zhao, ``Development of path planning approach using improved A-star algorithm in AGV system,'' Journal of Internet Technology, vol. 20, no. 3, pp, 915-924, 2019.DOI
12 
K. Sayevand and H. Arab, ``A fresh view on particle swarm optimization to develop a precise model for predicting rock fragmentation,'' Engineering Computations, vol. 36, no. 2, pp. 533-550, 2019.DOI
13 
Y. Zhou, S. Ke, and L. Shao, ``A new chaotic hybrid cognitive optimization algorithm,'' Cognitive Systems Research, vol. 52, no. 12, pp. 537-542, 2018.DOI
14 
Y. Xu and Y. Mei, ``A modified water cycle algorithm for long-term multi-reservoir optimization,'' Applied Soft Computing, vol. 71, no. 1, pp. 317-332, 2018.DOI
15 
L. Xiao, Y. Zhang, T. Ge, and C. Wang, ``Analysis, assessment and early warning of mudflow disasters along the Shigatse section of the China-nepal highway,'' Open Geosciences, vol. 12, no. 1, pp. 44-58, 2020.DOI
16 
W. Shi, J. Li, N. Cheng, F. Lyu, S. Zhang, H. Zhou, and X. Shen, ``Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks,'' IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8145-8158, 2019.DOI
17 
D. Hong, S. Lee, Y. H. Cho, D. Baek, J. Kim, and N. Chang, ``Least-energy path planning with building accurate power consumption model of rotary unmanned aerial vehicle,'' IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14803-14817, 2020.DOI
18 
S. Garai, R. K. Paul, and M. Kumar, ``Intra-annual national statistical accounts based on machine learning algorithm,'' Journal of Data Science and Intelligent Systems, vol. 2, no. 2, pp. 12-15, 2023.DOI