Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
Z. N. Abdullah, Z. A. Abutiheen, A. A. Abdulmunem, and Z. A. Harjan, ``Official logo recognition based on multilayer convolutional neural network model,'' TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 20, no. 5, pp. 1083-1090, 2022.DOI
2 
K. J. Mao, R. H. Jin, K. Y. Chen, J. Mao, and G. Dai, ``Trinity‐YOLO: High‐precision logo detection in the real world,'' IET Image Processing, vol. 17, no. 7, pp. 2272-2283, 2023.DOI
3 
L. Zhou, W. Min, D. Lin, Q. Han, and R. Liu, ``Detecting motion blurred vehicle logo in IoV using filter-DeblurGAN and VL-YOLO,'' IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 3604-3614, 2020.DOI
4 
S. Sahel, M. Alsahafi, M. Alghamdi, and T. Alsubait, ``Logo detection using deep learning with pretrained CNN models,'' Engineering, Technology, and Applied Science Research, vol. 11, no. 1, pp. 6724-6729, 2021.DOI
5 
W. Yousaf, A. Umar, S. H. Shirazi, Z. Khan, I. Razzak, and M. Zaka, ``Patch-CNN: Deep learning for logo detection and brand recognition,'' Journal of Intelligent, and Fuzzy Systems, vol. 40, no. 3, pp. 3849-3862, 2021.DOI
6 
R. K. Jain, Y. Iwamoto, T. Watasue, T. Nakagawa, T. Sato, X. Ruan, and Y. W. Chen, ``Weakly supervised logo detection using a dual-attention dilated residual network,'' IIEEJ Transactions on Image Electronics and Visual Computing, vol. 9, no. 1, pp. 12-19, 2021.DOI
7 
Y. Yu, H. Guan, D. Li, and C. Yu, ``A cascaded deep convolutional network for vehicle logo recognition from frontal and rear images of vehicles,'' IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 2, pp. 758-771, 2019.DOI
8 
K. C. Ranjith, ``Identification of fake vs original logos using deep learning,'' Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 12, no. 12, pp. 3770-3780, 2021.DOI
9 
J. Wang, W. Min, S. Hou, S. Ma, Y. Zheng, and S. Jiang, ``Logodet-3k: A large-scale image dataset for logo detection,'' ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 18, no. 1, pp. 1-19, 2022.DOI
10 
C. N. Network, ``Data augmentation using test-time augmentation on convolutional neural network-based brand logo trademark detection,'' Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), vol. 7, no. 2, pp. 266-274, 2024.DOI
11 
J. Yue, J. Fu, and C. Yang, ``Expressway vehicle logo detection: A lightweight CNN and logo localization method,'' Journal of Electronic Imaging, vol. 33, no. 2, %): 023035-023035 2024.DOI
12 
Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, ``Automatically designing CNN architectures using the genetic algorithm for image classification,'' IEEE Transactions on Cybernetics, vol. 50, no. 9, pp. 3840-3854, 2020.DOI
13 
J. Zhang, Y. Xie, Y. Xia, and C. Shen, ``Attention residual learning for skin lesion classification,'' IEEE Transactions on Medical Imaging, vol. 38, no. 9, pp. 2092-2103, 2019.DOI
14 
M. Murinto and M. Rosyda, ``Logarithm decreasing inertia weight particle swarm optimization algorithms for convolutional neural network,'' JUITA: Jurnal Informatika, vol. 10, no. 1, pp. 99-105, 2022.DOI
15 
V. Monga, Y. Li, and Y. C. Eldar, ``Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,'' IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18-44, 2021.DOI
16 
Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ``Evolving deep convolutional neural networks for image classification,'' IEEE Transactions on Evolutionary Computation, vol. 24, no. 2, pp. 394-407, 2019.DOI
17 
J. Yu, M. Tan, H. Zhang, Y. Rui, and D. Tao, ``Hierarchical deep click feature prediction for fine-grained image recognition,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2, pp. 563-578, 2019.DOI
18 
D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang, ``More diverse means better: Multimodal deep learning meets remote-sensing imagery classification,'' IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 4340-4354, 2020.DOI
19 
A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, and V. Ferrari, ``The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale,'' International Journal of Computer Vision, vol. 128, no. 7, pp. 1956-1981, 2020.DOI
20 
S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, ``Image segmentation using deep learning: A survey,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3523-3542, 2021.DOI
21 
B. Charbuty and A. Abdulazeez, ``Classification based on decision tree algorithm for machine learning,'' Journal of Applied Science and Technology Trends, vol. 2, no. 1, pp. 20-28, 2021.DOI
22 
S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, and A. Kreshuk, ``Ilastik: Interactive machine learning for (bio) image analysis,'' Nature Methods, vol. 16, no. 12, pp. 1226-1232, 2019.DOI
23 
S. Hou, J. Li, W. Min, Q. Hou, Y. Zhao, Y. Zheng, and S. Jiang, ``Deep learning for logo detection: A survey,'' ACM Transactions on Multimedia Computing, Communications and Applications, vol. 20, no. 3, pp. 1-23, 2023.DOI