Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
J. Gao, N. Liu, H. Li, Z. Li, C. Xie, and Y. Gou, ``Reinforcement learning decision-making for autonomous vehicles based on semantic segmentation,'' Applied Sciences, vol. 15, no. 3, 1323, Jan. 2025.DOI
2 
J. Tsai, Y.‑T. Chang, Z. Y. Chen, and Z. You, ``Autonomous driving control for passing unsignalized intersections using the semantic segmentation technique,'' Electronics, vol. 13, no. 3, 484, Jan. 2024.DOI
3 
A. Golda, K. Mekonen, A. Pandey, A. Singh, V. Hassija, V. Chamola, and B. Sikdar, ``Privacy and security concerns in generative AI: A comprehensive survey,'' IEEE Access, vol. 12, pp. 48126-48144, 2024.DOI
4 
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, ``Generative adversarial networks,'' Communications of the ACM, vol. 63, no. 11, pp. 139-144, 2020.DOI
5 
Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso, A. Torralba, and S. Fidler, ``DatasetGAN: Efficient labeled data factory with minimal human effort,'' Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10145-10155, 2021.DOI
6 
V. Sushiko, E. Schönfeld, D. Zhang, J. Gall, B. Schiele, and A. Khoreva, ``You only need adversarial supervision for semantic image synthesis,'' arXiv preprint arXiv:2012.04781, 2020.DOI
7 
K. Pandey, A. Mukherjee, P. Rai, and A. Kumar, ``VAEs meet diffusion models: Efficient and high-fidelity generation,'' Proc. of NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications. 2021.URL
8 
J. Ho, A. Jain, and P. Abbeel. ``Denoising diffusion probabilistic models,'' Advances in Neural Information Processing Systems, vol. 33, pp. 6840-6851, 2020.DOI
9 
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, ``High-resolution image synthesis with latent diffusion models,'' Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.10674-10685, 2022.DOI
10 
Q. nguyen, T. Vu, A. Tran, and K. Nguyen, ``Dataset diffusion: Diffusion-based synthetic data generation for pixel-level semantic segmentation,'' Advances in Neural Information Processing Systems, vol. 36, 2024.DOI
11 
W. Wu, Y. Zhao, M. Z. Shou, H. Zhou, and C. Shen, ``Diffumask: Synthesizing images with pixel-level annotations for semantic segmentation using diffusion models,'' Proc. of the IEEE/CVF International Conference on Computer Vision, pp. 1206-1217, 2023.DOI
12 
A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, ``Hierarchical text-conditional image generation with clip latents,'' arXiv preprint arXiv:2204.06125, 2022.DOI
13 
C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. Kundurthy, K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev, ``LAION-5B: An open large-scale dataset for training next generation image-text models,'' Advances in Neural Information Processing Systems, vol. 35, pp. 25278-25294, 2022.DOI
14 
B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, ``Scene parsing through ADE20K dataset,'' Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5122-5130, 2017.DOI
15 
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, and R. Benenson, ``The cityscapes dataset for semantic urban scene understanding,'' Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213-3223, 2016.DOI
16 
W. Zhou, W. Wang, W. Zhou, D. Chen, D. Chen, L. Yang, and H. Li, ``Semantic image synthesis via diffusion models,'' arXiv preprint arXiv:2207.00050, 2022.DOI
17 
J. Ho and T. Salimans, ``Classifier-free diffusion guidance,'' arXiv preprint arXiv:2207.12598, 2022.DOI
18 
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, ``SegFormer: Simple and efficient design for semantic segmentation with transformers,'' Advances in Neural Information Processing Systems, vol. 34, pp. 12077-12090, 2021.DOI
19 
R. Strudel, R. Garcia, I. Laptev, and C. Schmid, ``Segmenter: Transformer for semantic segmentation,'' Proc. of the IEEE/CVF International Conference on Computer Vision, pp. 7242-7252, 2021.DOI
20 
M.-H. Guo, C.-Z. Lu, Q. Hou, Z. Liu, M.-M. Cheng, and S.-M. Hu, ``SegNeXt: Rethinking convolutional attention design for semantic segmentation,'' Advances in Neural Information Processing Systems, vol. 35, pp. 1140-1156, 2022.DOI
21 
Z. Lv, Y. Wei, W. Zho, and K.-Y. Wong, ``PLACE: Adaptive layout-semantic fusion for semantic image synthesis,'' Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9264-9274, 2024.DOI