Mobile QR Code QR CODE
Export citation EndNote




전단강도, 프리스트레스 콘크리트, 프리캐스트 콘크리트, 합성보, 수평전단보강
shear strength, prestressed concrete, precast concrete, composite beam, horizontal shear reinforcement

  • 1. 서 론

  • 2. 현행기준의 전단강도

  • 3. 실험체 설계

  •   3.1 실험 변수

  •   3.2 실험체 설계 및 제작

  •   3.3 재료 강도

  • 4. 실험 결과

  •   4.1 실험체 1-A∼1-D

  •   4.2 실험체 2-A∼2-D

  •   4.3 실험체 3-A∼3-D

  •   4.4 실험체 4-A∼4-D

  • 5. 실험 분석

  •   5.1 설계변수의 영향

  •   5.2 긴장력에 의한 전단강도의 변화

  •   5.3 수직전단강도 기준식과의 비교

  •   5.4 수평전단강도 기준식과의 비교

  • 6. 결 론

1. 서    론

최근 들어 지하주차장이나 물류센터와 같은 모듈화 건물에서 기둥, 보, 슬래브 등의 구조부재를 프리캐스트 콘크리트(precast concrete, 이하 PC)와 현장타설 콘크리트(cast- in-place concrete, 이하 CIP)를 합성한 복합화 공법으로 시공하는 경우가 증가하고 있다(Fig. 1). 복합화 공법은 구조체의 일체성 확보가 용이하고 공기 단축에 효과적이다. 일반적으로 PC부재에는 재료의 효율성을 높이기 위해 프리텐션 공법(pre-tensioning construction)을 도입하여 부재의 휨 균열 강도 및 전단강도를 증가시킬 수 있다.

PC와 CIP 복합화 공법에서 프리텐션이 가해지는 PC부재는 고강도 콘크리트(35MPa 이상), CIP는 저강도 콘크리트(24MPa)를 사용한다. 이렇게 한 단면에 서로 다른 강도로 타설되는 경우 현행기준(KCI 2012 17.2.(3), ACI318- 11 17.2.3)1,2)에서는 각 요소의 특성을 각각 사용하거나 이들 중 가장 불리한 값을 사용하여 합성단면의 강도를 산정하도록 명시하고 있다. 그러나 합성단면에 대한 설계방법이 명확하지 않고 전단강도 산정 방법에 따른 편차가 크기 때문에 엔지니어들도 다양한 방법들로 전단강도를 평가하고 있는 실정이다.

서로 다른 콘크리트로 분리 타설된 합성부재의 전단강도 평가에 대한 선행연구에서는3-6) PC와 CIP 계면에서의 수평전단에 대한 연구가 대부분이다. 그 이유는 콘크리트 분리 타설된 면에서의 수평파괴나 균열이 발생하지 않고 일체거동이 이뤄져야 휨과 전단에 효과적으로 저항할 수 있기 때문이다.

반면에 수직전단강도에 대한 연구는 제한적이다. Kim et al.7,8)는 prestressing을 가하지 않은 PC-CIP 합성보에 대한 연구를 수행하였다. 이 연구 결과에 따르면, 합성부재의 수직전단강도는 전단강도 일반식과 단면적비로 평균한 유효콘크리트강도나 부재별로 각각 계산하여 단순 합산하는 방법을 사용하면 안전측으로 예측 가능하였다. 단, 횡보강이 없고 전단경간비가 4.0이상이며 휨 철근비가 1.75%이하의 경우 고강도콘크리트에 대해 과대평가하여 유효 콘크리트강도에 대한 상한 값을 45MPa로 제안하였다. 이 연구에서는 수직 전단보강이 없는 프리스트레스 합성단면의 전단강도 실험을 수행하였고 그 결과를 근거로 설계시 고려할 사항과 합성단면의 전단 거동을 연구하였다.

2. 현행기준의 전단강도

프리스트레스트 콘크리트 부재에서 콘크리트에 의한 전단강도에 대한 현행구조기준1)은 다음과 같다.

식 (1)은 프리스트레스트 콘크리트 수직전단강도 약산식으로, 휨철근 인장강도의 40% 이상의 유효프리스트레스 힘이 작용하는 부재의 경우 적용할 수 있다. 이때, /Resources/kci/JKCI.2014.26.4.533/images/PIC5E9A.gif/Resources/kci/JKCI.2014.26.4.533/images/PIC5ECA.gif 이상이고, /Resources/kci/JKCI.2014.26.4.533/images/PIC5F0A.gif 이하여야 한다. 여기서, /Resources/kci/JKCI.2014.26.4.533/images/PIC5F0B.gif는 콘크리트의 설계기준압축강도, /Resources/kci/JKCI.2014.26.4.533/images/PIC5F2B.gif는 계수전단력, /Resources/kci/JKCI.2014.26.4.533/images/PIC5F3B.gif는 계수휨모멘트, /Resources/kci/JKCI.2014.26.4.533/images/PIC5F6B.gif는 압축콘크리트 연단에서 프리스트레스트 긴장재의 도심까지 거리, /Resources/kci/JKCI.2014.26.4.533/images/PIC5F6C.gif는 긴장재와 압축콘크리트 연단까지 거리와 0.8/Resources/kci/JKCI.2014.26.4.533/images/PIC5F7D.gif 중 큰 값을 나타낸다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC5FDC.gif

Fig. 1 Composite members using PC and CIP concrete

식 (2)는 프리스트레스트 콘크리트 수직전단강도 정밀식으로, 휨-전단균열에 의한 전단강도(/Resources/kci/JKCI.2014.26.4.533/images/PIC601C.gif)와 복부-전단균열에 의한 전단강도(/Resources/kci/JKCI.2014.26.4.533/images/PIC602D.gif) 중 작은 값으로 계산한다.

여기서, /Resources/kci/JKCI.2014.26.4.533/images/PIC60AD.gif이다.

약산식 /Resources/kci/JKCI.2014.26.4.533/images/PIC612C.gif은 MacGregor9,10)에 의해 경험식으로 제안되어 ACI 318-70부터 현재까지 사용되고 있고, ACI 318-63까지는 휨-전단 균열강도(/Resources/kci/JKCI.2014.26.4.533/images/PIC614C.gif)와 복부-전단 균열강도(/Resources/kci/JKCI.2014.26.4.533/images/PIC615D.gif)식을 이용하였다.

정밀식의 휨-전단균열은 휨 균열에서 발전된 전단균열이고 복부-전단균열은 Fig. 2와 같이 콘크리트의 인장강도를 초과하는 인장 주응력에 의하여 부재의 내측부터 시작된다.1) 휨-전단균열에 의한 전단강도(식 (3))는 휨 균열을 휨-전단균열로 변화시키는 전단력과 고정하중에 의한 전단력, 휨 균열을 유발하는 전단력의 합으로 제시되어 있다. 균열 모멘트(/Resources/kci/JKCI.2014.26.4.533/images/PIC616D.gif, 식 (4))는 휨 균열 발생 응력(/Resources/kci/JKCI.2014.26.4.533/images/PIC61AD.gif)과 인장단면에서 작용하는 콘크리트 압축응력(/Resources/kci/JKCI.2014.26.4.533/images/PIC61AE.gif)의 합에 고정하중에 의한 응력(/Resources/kci/JKCI.2014.26.4.533/images/PIC61ED.gif)을 뺀 값으로 산정한다

/Resources/kci/JKCI.2014.26.4.533/images/PIC624C.gif

Fig. 2 Types of cracking in prestressed concrete beams

.

복부-전단균열에 의한 전단강도(식 (5))는 휨-전단균열에 비해 발생 빈도가 낮지만 얇은 두께의 웨브에 강한 프리스트레스가 가해졌을 경우 주로 발생한다. 이 식은 단면의 중심축에서 대략 /Resources/kci/JKCI.2014.26.4.533/images/PIC627C.gif의 주인장응력에 도달하면 복부-전단균열이 발생한다는 가정하에 제안된 것으로 /Resources/kci/JKCI.2014.26.4.533/images/PIC628D.gif는 단면중심에서 콘크리트 압축응력이고 /Resources/kci/JKCI.2014.26.4.533/images/PIC629D.gif는 단면에서 유효 프리스트레스 힘의 수직성분을 나타낸다.

합성콘크리트 휨 부재의 수평전단강도는 전단연결재가 없는 경우 다음과 같이 정의한다.

최소전단연결재가 있는 경우 다음과 같이 정의 한다.

여기서, /Resources/kci/JKCI.2014.26.4.533/images/PIC639A.gif는 접촉 면적에 대한 전단연결재 면적의 비, /Resources/kci/JKCI.2014.26.4.533/images/PIC63BA.gif는 수평전단에 대하여 검토되는 접촉 면적의 단면 폭을 나타낸다. 최소전단연결재는 식 (8)에 따라 산정하여야 하고 연결재의 간격은 지지요소의 최소 치수의 4배, 또한 600mm 이하이어야 한다.

3. 실험체 설계

3.1 실험 변수

프리스트레스 콘크리트와 일반 콘크리트로 분리타설 된 합성 휨 재의 전단 성능 평가를 위해 콘크리트의 면적비, 긴장재의 긴장력, 전단 경간비, 그리고 수평 전단저항을 위한 전단철근비를 변수로 단순지지 보 실험을 수행하였다. 첫 번째로 콘크리트 면적비는 Fig. 3과 같이 총 4가지로 구성하였다. 단면 A와 B는 각각 24MPa 저강도 콘크리트와 60MPa 고강도 콘크리트를 전단면에 타설한 단면으로, 분리 타설된 합성단면 C, D와의 비교를 위한 대조군이다. 여기서, 고강도 콘크리트로 PC부재에 주로 사용되는 35MPa 대신 60MPa를 사용한 이유는 건축 재료가 점점 고강도화 되는 추세를 반영한 것이고 저강도와 고강도 콘크리트의 강도차를 크게 하여 콘크리트 강도에 따른 전단강도 차이를 명확하게 보기 위함이다. 단면 C와 D는 저강도의 현장타설 콘크리트의 깊이가 전단강도에 미치는 영향을 보기 위한 단면으로, 단면 C의 상부 3/8과 단면 D의 상부 5/8에 저강도 콘크리트(24MPa)를 타설하였다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC6505.gif

Fig. 3 Reinforcement arrangement and cross sections (unit: mm)

Table 1 Test variables and predictions of moment and shear capacities of test specimens

Speci-mens

Section

type

Longitudinal reinforcement (ratio)

Transverse reinforcement for horizontal shear (ratio)

Prestress

a/d

(kN·m)

(kN)

(kN)

(kN)

(kN)

1-A

A

6-Φ12.7

(0.57%)

-

0.55/Resources/kci/JKCI.2014.26.4.533/images/PIC65E0.gif

3.0

217

223

70

3.18

-

-

-

1-B

B

288

295

263

1.14

-

-

-

1-C

C

229

234

173

1.35

142

594

4.19

1-D

D

226

232

114

2.04

142

390

2.75

2-A

A

0.70/Resources/kci/JKCI.2014.26.4.533/images/PIC66AC.gif

217

223

70

3.18

-

-

-

2-B

B

288

295

263

1.14

-

-

-

2-C

C

229

234

173

1.35

142

594

4.19

2-D

D

226

232

114

2.04

142

390

2.75

3-A

A

4.0

217

167

70

2.39

-

-

-

3-B

B

288

221

205

1.08

-

-

-

3-C

C

229

176

142

1.23

189

651

3.44

3-D

D

226

174

101

1.73

189

460

2.43

4-A

A

2-D10

(0.12%)

202

155

69

2.25

-

-

-

4-B

B

313

241

205

1.17

-

-

-

4-C

C

244

188

142

1.32

697

651

0.93

4-D

D

244

188

100

1.87

697

459

0.66

두번째 변수로 긴장재의 긴장력을 고려하였다. 긴장력은 60MPa 콘크리트에만 가하였으며, 긴장력의 크기가 전단강도에 미치는 영향을 보기 위해 강연선의 수는 6개로 동일하게 하되 긴장재의 긴장응력(/Resources/kci/JKCI.2014.26.4.533/images/PIC691E.gif)을 /Resources/kci/JKCI.2014.26.4.533/images/PIC693F.gif(1860MPa)의 55%와 70%로 두 가지를 사용하였다. 단, 24MPa 일체형 콘크리트의 단면 A는 긴장재를 사용하되 긴장력을 가하지 않고 타설하였다.

세 번째 변수로는 전단 경간비(a/d)를 고려하였다. 전단 경간비가 3.0인 경우와 4.0인 경우에 대해 실험하여 전단 경간 차에 따른 전단거동이 전단강도에 미치는 영향을 살펴보았다.

네 번째 변수로써 전단경간비가 4.0인 실험체에 전단철근을 수평전단에만 기여할 수 있는 최대 간격인 450mm로 배근하여 계면 수평균열이 없는 상태의 수직전단강도를 살펴보았다.

3.2 실험체 설계 및 제작

모든 실험체의 단면크기는 260×400mm 이며, 지점간 순 길이는 전단경간비가 3.0인 실험체의 경우 2350mm이고, 전단경간비가 4.0인 실험체의 경우 3000mm이다(Fig. 3). 강연선 긴장력의 전달길이를 고려하여 지점 이후 부재 길이를 650mm 연장시켰다.

강연선은 2단으로 배치하였고 피복두께를 고려하여 인장측 최외단에서 강연선 중심까지 거리와 강연선 중심간의 거리를 50mm로 배치하였고 프리스트레스에 의해 발생하는 상부 인장균열을 방지하기 위해 압축대에 SD400 D13 휨 철근 3개를 배근하였다. 수평균열의 영향을 최소화하기 위해 지점 이후로 SD300 D10 횡보강철근을 100mm 간격으로 배치하였다.

Table 1은 16개 실험체들의 예측 휨강도와 예측 수직/수평 전단강도를 나타낸다. 모든 실험체는 휨 성능(/Resources/kci/JKCI.2014.26.4.533/images/PIC694F.gif)에 도달하기 위한 휨 요구전단력(/Resources/kci/JKCI.2014.26.4.533/images/PIC6950.gif)을 수직 전단성능(/Resources/kci/JKCI.2014.26.4.533/images/PIC6A0D.gif)보다 크게 설계하여 휨 항복 전에 전단파괴가 발생하도록 계획하였다. 휨 성능은 현행기준(KCI 2012 9.5.1)1)의 프리스트레스 부재 휨강도 계산법으로, 수직전단 성능은 약산식(식 (1))으로 계산하였다. 단, 합성부재의 수직전단 성능 계산시 PC와 RC를 따로 계산하여 단순 합산하는 단순 누가법을 사용하였다(Fig. 16 참고).

Table 2 Mixture proportions of concrete

Nominal strength

W/C (%)

Unit weight (kg/m3)

W

C

S

G

SP

24

49.4

162

328

869

979

3.5

60

29

180

620

625

935

8.06

Note) Maximum aggregate size=25mm

Table 3 Mechanical properties of reinforcement

Type

/Resources/kci/JKCI.2014.26.4.533/images/PIC6A3D.gif (MPa)

/Resources/kci/JKCI.2014.26.4.533/images/PIC6A4D.gif (με)

/Resources/kci/JKCI.2014.26.4.533/images/PIC6A5E.gif (GPa)

12.7 mm SWPC 7BL

1854

8829

210

SD300  D10

340

1847

184

SD400  D13

480

2400

200

/Resources/kci/JKCI.2014.26.4.533/images/PIC6B1A.gif

Fig. 4 Stress–strain relationship of strand and re-bar

분리 타설된 계면에서의 수평전단파괴를 예측하기 위해 공칭수평전단강도(/Resources/kci/JKCI.2014.26.4.533/images/PIC6B4A.gif, 식 (6)과 (7))와 수평전단력(/Resources/kci/JKCI.2014.26.4.533/images/PIC6B5B.gif)을 비교하였다. 여기서, /Resources/kci/JKCI.2014.26.4.533/images/PIC6B7B.gif는 공칭 수직 전단강도에 해당하는 수평전단력으로 두 콘크리트 경계면에서의 전단응력()과 접촉면적(/Resources/kci/JKCI.2014.26.4.533/images/PIC6B8C.gif)을 곱한 값이다. 전단철근이 없는 실험체의 /Resources/kci/JKCI.2014.26.4.533/images/PIC6BBC.gif 값은 2.43∼4.19로 모든 합성단면 실험체는 수직전단파괴 이전에 수평전단균열이 발생할 것으로 예상되었고 수평전단 저항을 위한 최소전단연결재(식 (8))가 있는 실험체의 /Resources/kci/JKCI.2014.26.4.533/images/PIC6BEC.gif 값은 0.66, 0.93으로 수직전단파괴가 예상되었다.

실험체 제작은 두 차례에 걸쳐 진행되었다. 긴장시킨 강연선에 철근용 변형률 게이지(strain gauge)를 부착시킨 후 60MPa 콘크리트를 1차 타설하고 증기 양생하였다. 초기 양생은 40℃에서 1시간, 본 양생은 60℃에서 5시간동안 양생하였다. 긴장력 도입시 콘크리트 강도는 35MPa로, 타설 후 24시간이 지난 뒤 강연선을 절단하였다. 분리 타설할 계면의 레이턴스(laitance)를 제거하고 표면을 6mm이상 거칠게 처리한 후 24MPa 저강도 콘크리트를 2차 타설하였다. 압축강도 시험용 공시체는 실험체와 같은 조건에서 타설, 양생하였다.

실험의 주요변수 중 하나인 긴장재의 긴장력은 2가지 방법으로 측정하였다. 긴장 장치(strand center hole jack, SAMJIN)와 유압 펌프(hydraulic pumps)에 부착된 다이얼게이지(dial gauge) 값으로 측정하였고, 강연선 장력 측정용 중공 로드셀(KCG-200kNA, TML)을 사용하여 재확인하였다. 프리스트레스의 단기손실을 측정하기 위해 강연선 절단 전후의 길이 변화(slip)를 계측하였다. /Resources/kci/JKCI.2014.26.4.533/images/PIC6C0C.gif의 55%와 70%를 긴장한 실험체는 각각 평균 13.1%와 9.7% 단기 손실이 발생하였다. 실험체 제작 후 30일 이내에 실험을 진행하였고 프리스트레스 손실은 이 실험의 주요 관심사가 아니기 때문에 장기손실 영향은 고려하지 않았다.

하중재하를 위해 보 중앙에 2점 하중을 가하였고 지지점과 가력점에는 롤러철물을 사용하였다. 강연선이 전단파괴 이전에 휨 항복을 하였는지 확인하기 위해 강연선에 철근 변형률 게이지를 부착하였고 보 중앙부의 처짐과 곡률 측정을 위해 보의 중앙 하부에 5개의 LVDT를 설치하였다.

3.3 재료 강도

실험체에는 공칭강도 24MPa와 60MPa 두 가지 종류의 콘크리트를 사용하였으며 Table 2는 콘크리트의 배합을 나타낸다. 콘크리트 공시체는 KS F 2403 기준을 따라 100×200mm로 제작하였고 공시체를 강도별로 3개씩 KS F 2405 기준을 따라 압축 강도 실험을 하였다. 공시체 실험 강도 값은 전단 무보강 실험체의 경우 23MPa과 57MPa을 나타냈고, 수평전단보강 실험체의 경우 27MPa과 52MPa을 나타냈다.

강연선은 1860MPa급 12.7mm 7연선강선(SWPC 7BL)을, 철근은 SD300 D10과 SD400 D13을 사용하였다. 철근의 기계적 성질을 평가하기 위해 KS B 0801의 금속재료 인장시험 규정에 따라 시험편을 제작하였고 KS B 0802에 따라 시험을 실시하였다. 사용한 철근의 기계적 특성은 Table 3에 나타난 바와 같고 강연선은 0.2% offset method를 이용하여 항복응력과 변형률을 정의하였다.

4. 실험 결과

4.1 실험체 1-A∼1-D

실험체 1-A∼1-D는 전단경간비가 3.0이고 긴장 응력이 0.55/Resources/kci/JKCI.2014.26.4.533/images/PIC6C7A.gif인 실험체로 실험 결과는 Fig. 5, 6과 Table 4에 나타냈다. 단면 B∼D의 전단강도는 PSC부재의 전단강도 약산식(/Resources/kci/JKCI.2014.26.4.533/images/PIC6C9A.gif, 식 (1))을 사용한 단순누가법과 정밀식(/Resources/kci/JKCI.2014.26.4.533/images/PIC6CAB.gif, 식 (2))으로, 단면 A는 철근콘크리트 부재의 전단강도 약산식과 정밀식(KCI 2012 7.3.1)1)으로 예측하였다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC6DE5.gif

Fig. 5 Vertical load-center displacement relationship of 1-A~1-D (a/d=3.0, /Resources/kci/JKCI.2014.26.4.533/images/PIC6DF5.gif=0.55/Resources/kci/JKCI.2014.26.4.533/images/PIC6E35.gif for 1-B~1-D)

/Resources/kci/JKCI.2014.26.4.533/images/PIC6E74.gif

Fig. 6 Crack pattern of 1-A~1-D at the end of test

Table 4 Test results of specimen 1-A~1-D

Speci-mens

(MPa)

(kN)

KCI predicted

(kN)

24

MPa

60

MPa

/Resources/kci/JKCI.2014.26.4.533/images/PIC6EB4.gif

1-A

23

-

23

100

68

70

1.47

1.43

1-B

-

57

57

272

262

257

1.04

1.06

1-C

23

57

44

196

172

269

1.14

0.73

1-D

23

57

36

179

113

219

1.58

0.82

실험강도는 ‘1-B(544kN) > 1-C(392kN) > 1-D(358kN) > 1-A(200kN)’순으로 강도는 긴장력이 가해진 단면적 크기에 비례하여 증가하였고 긴장력 도입 여부에 따라 휨 균열 강도와 전단강도에 큰 차이를 보였다. 긴장력이 가해진 1-B∼1-D(250kN, 225kN, 225kN)의 휨 균열강도는 긴장력을 가하지 않은 1-A(42kN)에 비해 5배 이상 크게 나타났다.

모든 실험체는 사인장 균열과 함께 전단파괴가 발생하였다. 1-A∼1-C은 휨 균열이 사인장 균열로 발전하면서 사인장 균열파괴가 발생하였고, 1-D는 분리 타설된 계면에서 수평 균열과 함께 사인장균열 파괴가 발생하였다. 하중-변위 곡선에서 1-D는 두 번의 최대 하중점(two peak points)을 보이는데 사인장균열과 수평균열이 함께 발생하면서 하중이 1차로 감소하였고, 수평균열이 가력점으로 진전하면서 하중이 2차로 감소한 뒤 최종 파괴되었다.

전체적인 파괴양상(Fig. 6)은 이전 연구7)의 RC 합성보 실험체와 차이를 보였다. RC 실험체는 사인장 균열과 함께 휨 철근의 부착파괴가 발생하였지만, PSC 실험체는 사인장 균열만 발생하고 강연선에서의 부착파괴는 발생하지 않았다. 또한, 사인장 균열 발생(위험단면의 위치)은 RC 실험체의 경우 가력점과 지지점 가운데 지점에서 발생하였지만, PSC 실험체의 경우 가력점 부근에서 발생하였다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC7099.gif

Fig. 7 Development of crack pattern according to section types (a/d=3.0, /Resources/kci/JKCI.2014.26.4.533/images/PIC70B9.gif=0.55/Resources/kci/JKCI.2014.26.4.533/images/PIC70DA.gif)

Fig. 7은 단면형상에 따라 하중단계별 균열 양상을 나타낸다. 휨 인장균열이 발생한 이후, 1-A는 웨브에서 취성적으로 사인장 균열이 발생하였고 1-B와 1-C는 휨 균열이 사인장 균열로 발전하였고 1-D는 웨브에서 취성적으로 수평/사인장 균열이 발생하면서 최종 파괴되었다.

4.2 실험체 2-A∼2-D

실험체 2-A∼2-D는 전단경간비가 3.0이고 긴장 응력이 0.7/Resources/kci/JKCI.2014.26.4.533/images/PIC70FA.gif인 실험체로 실험 결과는 Fig. 8, 9와 Table 5에 나타냈다. 실험강도는 ‘2-B(632kN) > 2-C(456kN) > 2-D (358kN) > 2-A(154kN)’'순으로 긴장력이 가해진 단면적 크기에 비례하여 증가하였고 긴장력 도입 여부에 따라 휨 균열 강도와 전단강도 차이를 보였다. 2-A는 45kN에서, 2-C과 2-D은 266kN에서, 2-B은 334kN에서 휨 균열이 발생하였고, 2-B∼2-D의 긴장력은 1-B∼1-D보다 27% 큰 힘으로 긴장하여 휨 균열 강도와 전단강도 모두 증가하였다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC7233.gif

Fig. 8 Vertical load- center displacement relationship of 2-A~2-D (a/d=3.0, /Resources/kci/JKCI.2014.26.4.533/images/PIC7282.gif=0.70/Resources/kci/JKCI.2014.26.4.533/images/PIC72A3.gif for 2-B~2-D)

/Resources/kci/JKCI.2014.26.4.533/images/PIC72F2.gif

Fig. 9 Crack pattern of 2-A~2-D at the end of test

Table 5 Test results of 2-A~2-D

Speci-mens

(MPa)

(kN)

KCI predicted (kN)

24 MPa

60 MPa

/Resources/kci/JKCI.2014.26.4.533/images/PIC7312.gif

2-A

23

-

23

77

68

71

1.13

1.08

2-B

-

57

57

316

262

315

1.21

1.00

2-C

23

57

44

228

172

339

1.33

0.67

2-D

23

57

36

179

113

277

1.58

0.65

최종 파괴 양상(Fig. 9)은 1-A∼1-D와 비슷하였다. 모든 실험체가 사인장 균열 파괴되었고 2-D에서만 계면에서 수평균열과 사인장 균열이 함께 발생하였다. 2-A는 긴장재의 부착파괴가 발생하여 dowel action에 의한 전단저항력이 낮아서 동일 조건의 1-A보다 23% 낮은 강도에서 전단파괴가 발생하였다. 2-C는 압축대의 저강도 콘크리트가 압괴하면서 휨 파괴 양상으로 파괴가 진행되다 최종적으로 사인장 균열이 발생하면서 휨 전단파괴가 발생하였다. 하중-변위 곡선에서 2-C가 최대변위일 때 강연선 변형률 /Resources/kci/JKCI.2014.26.4.533/images/PIC7361.gif=4987με < /Resources/kci/JKCI.2014.26.4.533/images/PIC73A1.gif=8829με으로 강연선은 휨 항복이 발생하지 않았다. 하중-변위 곡선에서 2-D는 세 번의 최대 하중점(three peak points)을 보이는데 오른쪽에 사인장균열이 발생하면서 하중이 처음으로 감소한 후 왼쪽 수평/사인장균열에 의해 하중이 두 번째로 감소한 후 최종적으로 오른쪽 사인장 균열에 의해 파괴되었다.

전단경간비가 3.0인 실험체는 웨브에 타설된 콘크리트강도에 따라 파괴메커니즘에 차이를 보였다. 웨브에 60MPa가 타설된 경우(단면 B와 C) 휨 균열이 사인장 균열로 발전하면서 최종 파괴가 발생하였고, 24MPa가 타설된 경우(단면 A와 D) 휨 균열과 관계 없이 웨브에서 취성적으로 발생한 사인장 균열에 의해 최종 파괴가 발생하였다. 단면 D는 웨브 아래 부분에 분리 타설된 계면이 형성되어 웨브에서 발생한 사인장 균열이 마찰 저항이 약한 계면을 따라 수평전단파괴가 발생하였다. 최소전단연결재로 수평전단보강을 할 경우, 계면에서의 마찰저항이 증가되고 계면에서의 수평균열이 억제되어 전단강도가 증가할 것이다.

4.3 실험체 3-A∼3-D

실험체 3-A∼3-D는 전단경간비가 4.0이고 긴장 응력이 0.7/Resources/kci/JKCI.2014.26.4.533/images/PIC743E.gif인 실험체로 실험 결과는 Fig. 10, 11과 Table 6에 나타냈다. 실험강도는 ‘3-B(428kN) > 3-C(284kN) > 3-D (278kN) > 3-A(144kN)’순으로 긴장력이 가해진 단면적 크기에 비례하여 증가하였다. 전단경간비가 증가하면서 휨 균열강도와 전단강도 모두 감소하였다. 3-A는 42kN, 실험체 3-C과 3-D는 156kN, 3-B은 223kN에서 휨 균열이 발생하였고 일체형 보인 3-B는 2-B에 비해 32% 강도가 감소하였다.

최종파괴 양상(Fig. 11)에서 3-A와 3-B의 파괴메커니즘을 비교해보면, 긴장력에 의한 압축력이 전단파괴 거동을 변화시켰다. 전단면에 긴장력이 가해진 3-B는 웨브에 사인장 균열이 발생하더라도 부재에 작용하는 압축력이 파괴를 지연시켰지만 3-A는 웨브에서 사인장 균열이 발생하는 동시에 취성적으로 파괴되었다. 3-C와 3-D는 가력점 부근의 저강도 콘크리트(24MPa)에서 발생한 사인장 균열이 전단철근이 없고 마찰력이 부족한 수평계면을 따라 지지점으로 진전하면서 취성적으로 파괴되었다. 실험체 1, 2의 결과와 비교해보면, 전단경간비가 증가하면서 휨 작용이 크게 발생하여 합성단면 모두 사인장 균열과 수평 전단균열이 함께 발생하였다.

4.4 실험체 4-A∼4-D

/Resources/kci/JKCI.2014.26.4.533/images/PIC7671.gif

Fig. 10 Vertical load-center deflection relationship of 3-A~ 3-D (a/d=4.0, /Resources/kci/JKCI.2014.26.4.533/images/PIC7682.gif=0.70/Resources/kci/JKCI.2014.26.4.533/images/PIC76B2.gif for 3-B~3-D)

/Resources/kci/JKCI.2014.26.4.533/images/PIC76F1.gif

Fig. 11 Crack pattern of 3-A~3-D at the end of test

Table 6 Test results of 3-A~3-D

Speci-mens

(MPa)

(kN)

KCI predicted (kN)

24 MPa

60 MPa

/Resources/kci/JKCI.2014.26.4.533/images/PIC7721.gif

3-A

23

-

23

72

68

69

1.06

1.04

3-B

-

57

57

214

204

248

1.05

0.86

3-C

23

57

44

142

141

254

1.01

0.56

3-D

23

57

36

139

99

219

1.40

0.63

/Resources/kci/JKCI.2014.26.4.533/images/PIC7907.gif

Fig. 12 Vertical load-center deflection relationship of 4-A~ 4-D (a/d=4.0, /Resources/kci/JKCI.2014.26.4.533/images/PIC7927.gif=0.70/Resources/kci/JKCI.2014.26.4.533/images/PIC7947.gif s=450mm for 4-B~4-D)

/Resources/kci/JKCI.2014.26.4.533/images/PIC7987.gif

Fig. 13 Crack pattern of 4-A~4-D at the end of test

Table 7 Test results of 4-A~4-D

Speci-mens

(MPa)

(kN)

KCI predicted (kN)

24 MPa

60 MPa

/Resources/kci/JKCI.2014.26.4.533/images/PIC7997.gif

4-A

27

-

23

100

73

75

1.37

1.33

4-B

-

52

52

257

203

232

1.27

1.11

4-C

27

52

43

191

143

245

1.34

0.78

4-D

27

52

36

183

103

194

1.78

0.94

실험체 4-A∼4-D는 최소 전단연결철근(s=450mm, 식 (8))을 사용하여 수평균열을 억제한 실험체로, 전단경간비는 4.0이고 긴장 응력은 0.7/Resources/kci/JKCI.2014.26.4.533/images/PIC7A25.gif으로 실험체 3-A∼3-D(이하 실험체 3)과 동일하다. 실험 결과는 Fig. 12, 13과 Table 7에 나타냈다. 실험체 강도는 ‘4-B(514kN)>4-C(382kN)>4-D(366kN)>4-A(199kN)’순으로 긴장력이 가해진 단면적 크기에 비례하여 증가하였고 실험체 3에 비해 20∼39% 강도가 증가하였다. 초기 강성과 휨 균열은 실험체 3과 동일하였지만, 사인장 균열이 발생 후 전단철근이 수평 및 수직전단에 저항하면서 최대 하중과 최대 변위가 증가하였다.

최종 파괴 양상(Fig. 13)에서 점선은 전단철근의 위치를 나타내는 것으로, 합성단면은 최소 전단연결재(식 (8))에 의해 수평균열이 억제되었고 사인장 균열에 의해 최종 파괴되었다. 사인장 균열은 전단철근 사이에서 발생하였지만, 가력점으로 진전되면서 전단철근이 수직전단강도에 기여하여 전단강도가 실험체 3에 비해 증가하였다.

5. 실험 분석

5.1 설계변수의 영향

설계변수의 영향을 알아보기 위해 Fig. 14에 긴장재의 긴장력, 전단경간비, 전단철근비의 변화에 따른 전단강도차이를 나타냈다. 합성단면 C와 D의 실험 결과는 강성과 강도면에서 긴장력이 가해지지 않은 단면 A(CIP단면)보다는 긴장력이 가해진 단면 B(PSC단면)와 유사한 결과를 보였기 때문에 단면 B∼D에 대해 설계변수에 따른 전단강도의 변화를 분석하였다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC7A93.gif

(a) Prestress at the jacking stage (fpu)

/Resources/kci/JKCI.2014.26.4.533/images/PIC7B11.gif

(b) Shear span to depth ratio, a/d

/Resources/kci/JKCI.2014.26.4.533/images/PIC7B60.gif

(c) Shear rein forcement ratio (%)

Fig. 14 Effects of test parameters

단면에 가해진 긴장력 크기에 따른 전단강도의 변화를 보기 위해 Fig. 14(a)에 전단경간비가 3.0인 실험체를 대상으로 단면 형상별로 비교하였다. 단면 D를 제외하고 긴장력 크기에 따라 전단강도가 증가하였다. 단면 D는 긴장력 크기 차이에도 똑같은 전단강도(179kN)를 보이는데, 이는 긴장력의 영향이 없는 상부 저강도 콘크리트에서 발생한 사인장 균열과 수평전단 균열에 의해 파괴되었기 때문에 긴장력의 영향이 없었다. Fig. 14(b)는 전단경간비에 따른 전단강도의 변화로, /Resources/kci/JKCI.2014.26.4.533/images/PIC7B71.gif의 70%를 초기 긴장력으로 가한 실험체를 대상으로 단면 형상별로 전단강도의 변화를 보여준다. 전단경간비가 증가하면서 모든 단면에서 전단강도가 감소하였다.

최소수평전단철근에 따른 전단강도의 변화를 보기위해 Fig. 14(c)에 전단경간비가 4.0, /Resources/kci/JKCI.2014.26.4.533/images/PIC7BC0.gif의 70%를 초기 긴장력으로 가한 실험체를 대상으로 단면 형상별로 비교하였다. 모든 단면의 전단강도는 최소 수평전단철근에 의해 증가하였다. 합성단면 C와 D는 전단철근에 의해 수평균열이 억제 되면서 전단강도가 각각 35%와 32% 증가하였고 단면 B는 사인장 균열면이 전단철근을 통과하면서 전단강도가 20%증가하였다. 4-B의 최대하중일 때의 전단철근 변형률(/Resources/kci/JKCI.2014.26.4.533/images/PIC7BE0.gif=1143με)을 살펴보면, 항복변형률(/Resources/kci/JKCI.2014.26.4.533/images/PIC7C20.gif=1847με)에 도달하지 않았지만 전단철근이 수직전단에 저항한 것을 보여준다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC7D79.gif

Fig. 15 Comparison between PSC and RC specimens

5.2 긴장력에 의한 전단강도의 변화

강연선의 긴장력이 전단강도에 미치는 영향을 알아보기 위해 Fig. 15에 PSC와 RC 실험체를 비교하였다. RC 실험체는 강연선 대신 인장철근을 사용한 실험체로 이전 연구 결과7)를 사용하였다. PSC 실험체와 비슷한 휨 성능을 가진 RC실험체를 비교하였으며(/Resources/kci/JKCI.2014.26.4.533/images/PIC7D99.gif), 단면형상(B∼D)에 따라 긴장력이 전단강도에 미치는 영향을 알아보았다. 단면 A는 긴장력이 가해지지 않았기 때문에 비교에서 제외하였다.

Fig. 15는 전단경간비가 4.0인 PSC와 RC실험체의 단면 형상에 따른 하중-변위 곡선을 비교한 것으로 PSC는 실선, RC는 점선으로 나타냈다. RC실험체는 초기에 휨 균열이 발생하면서 강성이 줄어들었지만 PSC실험체는 긴장력(0.70/Resources/kci/JKCI.2014.26.4.533/images/PIC7DC9.gif)에 의해 휨 균열 강도가 RC실험체에 비해 3.3∼3.8배 증가하였고 그에 따라 전단강도가 증가하였다. 전단면에 긴장력을 가한 단면 B는 긴장력에 의해 전단강도가 2.2배 증가하였고, 단면 하부(63%, 38%)에 긴장력이 가해진 단면 C와 D는 전단강도가 각각 1.3과 1.5배 증가하였다.

합성단면 C와 D의 전단파괴 발생시 변위(center displacement)를 살펴보면, 단면 하부의 긴장력과 무관하게 PSC와 RC실험체는 동일한 변위에서 전단파괴가 발생하였다. 긴장력에 의해 초기 휨 균열 강도가 증가한 PSC 실험체는 초기 강성을 오래 유지하여 전단강도가 증가하였지만, 최종파괴는 긴장력의 영향이 없는 상부 24MPa에서 발생한 사인장 균열에 의해 영향을 받았다(실험체 3-C와 3-D 참고).

횡 보강되지 않은 휨 지배 부재에서 긴장력이 전단강도에 미치는 영향은 다음과 같다. 전단면에 긴장력을 가한 단면 B는 휨 균열강도와 사인장균열강도 모두 크게 증가하였다. 단면 하부에만 긴장력을 가한 단면 C와 D의 경우, 휨 균열강도는 증가하였지만 사인장 균열은 긴장력의 영향이 없는 상부 단면에서 발생하여 긴장력의 영향을 받지 않았다.

/Resources/kci/JKCI.2014.26.4.533/images/PIC7E37.gif

Fig. 16 Shear strength predictions of composite sections

5.3 수직전단강도 기준식과의 비교

프리스트레스 콘크리트 합성 보의 수직 전단강도를 평가하기 위해 실험 결과와 현행 기준식을 비교하였다. 현행 기준식(KCI 2012, ACI 318-11)1,2)으로 PSC부재의 전단강도 약산식(식 (1))과 정밀식(식 (2))을 사용하였다.

PSC부재는 선 압축력(pre-compression)에 의해 전단강도가 증가하지만, PSC부재 상부에 타설되는 CIP콘크리트에는 압축력이 작용하지 않기 때문에 전단강도 증가가 발생하지 않는다. 따라서 합성부재의 전단강도 계산시 부재별 특성에 맞게 각각 전단강도를 계산한 뒤 단순 합산하는 누가법을 사용하였다. 전단강도 일반식을 사용할 경우, Fig. 16과 같이 PSC부재는 프리스트레스 콘크리트 부재의 전단강도식(식 (1))으로, CIP부재는 철근콘크리트 부재의 전단강도식(/Resources/kci/JKCI.2014.26.4.533/images/PIC7E57.gif)으로 계산하여 단순 합산하였다. 예측 결과는 Fig. 16에 실험변수와 단면 형상에 따라 실선으로 표시하였다. 정밀식은 프리스트레스 콘크리트 부재의 전단강도 정밀식(식 (2))에 따라 부재의 특성에 맞게 예측하였고 결과는 Fig. 16에 점선으로 표시하였다.

부재 특성에 따른 단순 누가법이 일반식의 경우 모든 실험체에 대해 안전측으로 잘 예측하였지만, PSC의 단면적비가 상대적으로 낮은 단면 D(실험체 4, 8, 12, 16)에 대해서는 실험값 대 예측값의 비가 1.40∼1.78로 크게 보수적이었다. 이는 전단면에 대한 PSC부재 비율이 낮더라도 인장대에 작용하는 프리스트레스 압축력이 전단강도 증가에 크게 기여한다는 것을 보여준다. 반면에 정밀식의 예측 결과는 안전측에서 크게 벗어났다. 단일단면의 경우 3-B를 제외하고는 모두 안전측으로 예측하였지만, 합성단면의 경우 모두 비안전측으로 예측하여 안전성 문제가 우려된다. 추가 연구를 통해 합성단면에 대한 정밀식의 적절한 예측 방법이 필요하다.

5.4 수평전단강도 기준식과의 비교

이 실험에서 전단철근이 없는 합성단면의 경우 1-C와 2-C를 제외하고 수평/수직전단파괴가 함께 발생하였다. 특히, 단면 D와 같이 분리타설된 계면이 인장측에 있고 전단경간비가 클 때 계면파괴가 발생하였다. 계면을 가진 합성단면의 경우 휨 균열이 사인장 균열로 발전되기 전에 상부 저강도 콘크리트에서 발생한 사인장 균열이 계면을 따라 지지점으로 진전되면서 수평/수직전단파괴가 함께 발생하였다.

수평 균열이 발생한 실험체 1-D, 2-D, 3-C, 3-D의 수평균열 발생시 계면에서의 전단력(/Resources/kci/JKCI.2014.26.4.533/images/PIC7EA7.gif)은 2.42MPa, 2.42MPa, 1.92MPa, 1.88MPa로 현행 기준(식 (6))보다 3.4∼4.3배 크게 나타났다. 이는 현행 기준식이 수평전단강도를 크게 보수적으로 예측하고 있는 것을 보여준다.

전단철근이 없는 콘크리트 합성단면의 수평전단강도에 대한 기존연구를 살펴보면, CTA11)는 매끈한 계면의 경우 0.63MPa, 1.5mm 거친 계면의 경우 1.12MPa, 6mm 거친 계면의 경우 2.1MPa을 수평전단력으로 제안하였고, Jonathan and Clay12)의 실험에서는 계면의 상태에 따라 현행기준1,2)의 6∼10배 큰 전단강도를 보였고 계면의 상태에 따라 4MPa(6mm 거친면)를 설계에 적용할 수 있다고 제안하였다.

반면, 최소전단철근을 사용한 실험체 4-C와 4-D는 수평전단균열 없이 사인장 균열파괴가 발생하였다. 실험강도와 예측강도의 비(/Resources/kci/JKCI.2014.26.4.533/images/PIC7EE6.gif)는 각각 1.25와 1.20로 실험 값이 현행 기준(식 (7))보다 20%이상 크게 나타났다.

단순지지 보에서는 가력점과 지지점 부근에서 대각 스트럿 작용과 아치작용이 발생한다. 따라서 분리타설된 계면에서는 계면에 평행한 수평전단력뿐만 아니라 수직한 압축력도 함께 작용하여 합성보의 수평전단 성능이 현행 기준에 비해 크게 증가하였다. 반면에 장기적으로는 건조수축이나 크리프에 의해 수평전단력이 감소할 수 있다.

6. 결    론

이 연구에서는 수직전단보강이 되지 않은 프리스트레스 PC-CIP 합성보의 전단거동을 알아보기 위해 콘크리트의 면적비, 긴장재의 긴장력, 전단 경간비, 그리고 전단철근을 변수로 실험을 실시하였으며, 실험 결과를 분석하여 프리스트레스 합성단면을 설계시 고려사항과 합성단면의 전단 거동을 연구하였다. 그 결론은 다음과 같이 요약할 수 있다.

1)단면 하부에만 긴장력이 가해진 합성단면 C와 D의 전단강도는 전단면에 긴장력이 가해진 단면 B와 유사한 거동을 보였다. 합성단면의 초기 휨 균열강도와 강성은 긴장력이 가해지지 않은 단면보다 크게 나타났으며, 전단강도는 긴장력이 가해진 단면의 면적비와 강연선에 가해진 긴장력의 크기에 비례하여 증가하였고, 전단경간비가 증가할수록 감소하였다.

2)프리스트레스가 가해진 보의 전단 파괴메커니즘은 웨브 콘크리트 강도에 따라 차이를 보였다. 웨브 콘크리트 강도가 60MPa인 단면 B와 C는 휨 균열이 사인장 균열로 발전하면서 파괴되었고, 웨브 콘크리트 강도가 24MPa인 단면 A와 D는 웨브에서 취성적으로 발생한 사인장 균열에 의해 파괴되었다. 전단경간비가 큰 경우 휨 작용이 크게 작용하여 계면에서 수평균열이 선행하였고 최소전단철근을 사용한 경우 수평균열이 발생하지 않았다.

3)프리스트레스가 가해진 합성단면에 대해 부재 별로 부재 특성에 맞게 현행 기준의 약산식을 사용하여 단순 누가법으로 계산한 경우 실험 결과를 모두 안전측으로 예측하였다. 반면에 전단강도 정밀식으로 합성단면의 특성에 맞게 예측한 경우 단일 단면에 대해서는 대부분 안전측으로 예측하였지만, 합성단면에 대해서는 모두 비안전측으로 예측하여 안전성 문제가 우려된다.

4)분리 타설된 계면에서 수평 균열이 발생한 수평전단철근이 없는 실험체를 토대로 현행 설계기준과 실험 결과를 비교해보면, 실험 결과(1.88∼2.42MPa)는 현행 기준(0.56MPa)보다 3.4∼4.3배 크게 나타났다. 현행 기준이 전단연결재가 없는 부재의 수평전단강도를 크게 보수적으로 예측하고 있다. 수평전단철근이 있는 경우는 계면에서 수평균열이 발생하지 않았고, 실험 결과가 현행 기준(식 (7))보다 최소 20%이상 크게 나타났다.

Acknowledgements

이 연구는 국토해양부가 주관하고 한국건설교통기술평가원이 시행하는 2011년 R&D 정책인프라사업(11기술 표준화 07-01)으로 이루어진 것으로 이에 감사드립니다.

References

1 
1.Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2012, pp. 164-175, 366-369.Google Search
2 
2.ACI Committee 318, Building Code Requirements for Structural Concrete(ACI 318-11), American Concrete Institute, Farmington Hills, MI, 2011, pp. 164-174, 283-285.Google Search
3 
3.Saemann, J. C. and Washa, G. W., “Horizontal Shear Connections between Precast Beams and Cast-In-Place Slabs,” ACI Structural Journal, Vol. 61, No. 11, 1964, pp. 1383-1409.Google Search
4 
4.Loov, R. E. and Patnaik, A. K., “Horizontal Shear Strength of Composite Concrete Beams with a Rough Interface,” PCI Journal, Jan-Feb 1994, pp. 48-69.DOI
5 
5.Kahn, L. F. and Slapkus, A., “Interface Shear in High Strength Composite T-Beams,” PCI Journal, July-Aug 2004, pp. 102-110.DOI
6 
6.Halicka, A., “Influence New-To-Old Concrete Interface Qualities on the Behavior of Support Zones of Composite Concrete Beams,” Construction and Building Materials, Oct 2011, pp. 4072-4078.DOI
7 
7.Kim, C. G., Park, H. G., Hong, G. H., and Kang, S. M., “Shear Strength of Hybrid Beams Combining Precast Concrete and Cast-In-Place Concrete,” Journal of the Korea Concrete Institute, Vol. 25, No. 2, 2013, pp. 175-185. (doi: http://dx.doi.org/10.4334/jkci.2013.25.2.175)Google Search
8 
8.Kim, C. G., Park, H. G., Hong, G. H., and Kang, S. M., “Shear strength of PC-CIP composite Beams with Shear Reinforcement,” Journal of the Korea Concrete Institute, Vol. 26, No. 2, 2014, pp. 189-199. (doi: http://dx. doi.org/ 10.4334/jkci.2014.26.2.189)Google Search
9 
9.MacGreger, J. G. and Sozen, M. A., and Sless, C. P., "Strength of Prestresed Concrete Beams with Web Reinforcement," ACI Journal Proceedings, Vol. 62, No. 12, 1965, pp. 1503-1519.Google Search
10 
10.MacGregor, J. G. and Hanson, J. M., "Proposed Changes in Shear Provisions for Reinofrced and Prestressed Concrete Beams," ACI Journal Proceedings, Vol. 66, No. 4, 1969, pp. 276-288.Google Search
11 
11.CTA 76-B4, "Strength of Bonded and Partially Bonded Composite Beams without Ties," Concrete Technology Associate, Tacoma, WA, 1976.Google Search
12 
12.Jonathan, D. K. and Clay, N., "Horizontal Shear Capacity of Composite Concret Beams without Interface Ties," ATLSS Report No. 08-5, 2008, pp. 1-221.Google Search