Mobile QR Code QR CODE
Export citation EndNote

  1. κ°€μ²œλŒ€ν•™κ΅ 건좕곡학과 λΆ€κ΅μˆ˜ (Associate Professor, Department of Architectural Engineering, Gachon University, Seongnam 13120, Rep. of Korea)
  2. μ•„μ΄μ‹œμŠ€μ΄μ—”μ”¨ νŒ€μž₯ (Manager, Department of R&D, ISIS E&C Co., Ltd., Seoul 07236, Rep. of Korea)
  3. μ—μŠ€μ•€μ”¨μ‚°μ—… 상무이사 (Executive Director, Technical Research Center, S&C Industry Co., Ltd., Seoul 05854, Rep. of Korea)
  4. κ°€μ²œλŒ€ν•™κ΅ 건좕곡학과 쑰ꡐ수 (Assistant Professor, Department of Architectural Engineering, Gachon University, Seongnam 13120, Rep. of Korea)



ν•©μ„±ν˜• μž”κ΅, μ½”ν•‘, μ••μΆ•κ°•λ„μ‹€ν—˜, νœ¨κ°•λ„μ‹€ν—˜, ꡬ쑰적 μ•ˆμ „μ„±
composite pier, coping, compressive strength test, flexural strength test, structural safety

1. μ„œ λ‘ 

μž”κ΅λŠ” μ„ λ°•μ˜ 뢀두 μ ‘μ•ˆμ„ μš©μ΄ν•˜κ²Œ ν•˜λŠ” ꡬ쑰물이며(Park et al. 2009) ν•˜λΆ€λŠ” μ—¬λŸ¬ 개의 직항 λ˜λŠ” μ‚¬ν•­μ˜ 말뚝으둜 κ΅¬μ„±λ˜μ–΄ 있으며, 상뢀 슬래브(slab)와 μΌμ²΄ν™”ν•œ ν˜•νƒœμ˜ ν•­λ§Œμ‹œμ„€ ꡬ쑰물이닀(Park and Kim 2008).

μž”κ΅μ— λŒ€ν•œ μ‚¬νšŒμ  μš”κ΅¬κ°€ 증가함에 따라 μ‹œκ³΅μ‘°κ±΄μ΄ μ–‘ν˜Έν•œ ν•­ λ‚΄(on-shore)μ—λ§Œ μž”κ΅λ₯Ό μ‹œκ³΅ν•˜λ˜ κΈ°μ‘΄ λ°©μ‹κ³ΌλŠ” ν•΄μ—­μ—μ„œ λͺ¨λ“ˆ 접합을 ν•˜λŠ” λ“±μ˜ λ‹€μ–‘ν•œ μ‹œκ³΅μ‘°κ±΄μ— λŒ€ν•œ μ μš©μ‚¬λ‘€κ°€ μ¦κ°€ν•˜κ³  있으며, μ–‘μ••λ ₯ λ“± κΈ°μ‘΄ μž”κ΅μ—μ„œ 섀계에 λ°˜μ˜ν•˜μ§€ μ•Šλ˜ ν•˜μ€‘μ— λŒ€ν•œ κ²€ν† κ°€ 이루어지고(Park et al. 2009) 그에 따라 μž”κ΅μ˜ ꡬ쑰 μ•ˆμ „μ„±μ— λŒ€ν•œ 관심이 μ¦κ°€ν•˜κ³  μžˆλ‹€.

κ΅­λ‚΄μ—μ„œλŠ” μ„œν•΄ μ—°μ•ˆμ—­μ— 쑰립식 λ³΄λ„μž”κ΅λ₯Ό μ„€μΉ˜ν•˜κΈ° μœ„ν•΄ μ΅œμ ν™”λœ 섀계단면과 ꡬ쑰해석을 μ œμ•ˆν•˜λŠ” 연ꡬλ₯Ό 진행(Yoo et al. 2011)ν•˜μ˜€κ³  λ§λšμ§€μ§€ν˜• 쑰립식 μž”κ΅μ˜ μ‹œκ³΅ μ‹œ ꡬ쑰물의 휨, 비틀림에 λŒ€ν•œ ꡬ쑰 μ•ˆμ „μ„± κ²€ν† λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€(Ham et al. 2013). ν•΄μ•ˆμ— μ„€μΉ˜ν•˜λŠ” μž”κ΅μ˜ νŠΉμ„±μƒ 뢀식에 κ°•ν•œ 슈퍼 콘크리트(super concrete)λ₯Ό κ°œλ°œν•˜μ—¬ μž”κ΅μ˜ ν•˜μ€‘λŠ₯λ ₯ μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ˜€κ³ (Yoon et al. 2016), Choi 등은 λΆ€μž”κ΅μ˜ μ„±λŠ₯평가λ₯Ό ν•˜κΈ° μœ„ν•΄ 슈퍼 콘크리트둜 μΆ•μ†Œ μ‹€ν—˜μ²΄λ₯Ό μ œμž‘ν•˜μ—¬ λ°”λ‹₯판의 μ••μΆ•κ°•λ„μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€(Choi et al. 2017). λ˜ν•œ, ν°νˆ°ν˜• μ΄ˆλŒ€ν˜• λΆ€μœ μ²΄μ‹ 해상 뢀두에 λŒ€ν•œ 연ꡬ도 ν™œλ°œνžˆ μ§„ν–‰λ˜κ³  μžˆλ‹€(Lee et al. 2016).

κ΅­μ™Έμ—μ„œλŠ” 이미 μΌλ³Έμ—μ„œλŠ” ν•΄μƒμ—μ„œ μ—°μ†μ μœΌλ‘œ 뢀체 ꡬ쑰물을 μ ‘ν•©ν•˜μ—¬ μ΄ˆλŒ€ν˜• λΆ€μœ μ‹ 해상 ꡬ쑰물을 μ‹œκ³΅ν•˜λŠ” λ©”κ°€ν”„λ‘œνŠΈν”„λ‘œμ νŠΈ(mega-float project)λ₯Ό μˆ˜ν–‰ν•˜μ˜€κ³ , λ―Έκ΅­ ONR(office of naval research)μ—μ„œλŠ” 1997λ…„λΆ€ν„° λ―Έν•΄κ΅°μ˜ μ΄λ™ν˜• 해ꡰ기지(mobile offshore base, MOB)의 μ„€κ³„κ°œλ°œμ„ μœ„ν•΄ μ΄λ™ν˜• λΆ€μœ μ‹ ꡬ쑰물 μ—¬λŸ¬ 개의 λͺ¨λ“ˆμ„ ν•΄μ—­μ—μ„œ λͺ¨λ“ˆ μ ‘ν•©ν•˜λŠ” κΈ°μˆ κ²€ν† κ°€ ν™œλ°œνžˆ μ§„ν–‰λ˜μ—ˆλ‹€(Hong 2008).

μž”κ΅μ˜ 섀계 및 μ‹œκ³΅ 기쀀은 μ–΄ν•­ 및 ν•­λ§Œ 섀계기쀀(MOF 2014)을 μ€€μš©ν•˜κ³  있으며 기쀀에 μ œμ‹œλ˜μ§€ μ•Šμ€ ν•˜μ€‘κ³Ό ν•˜μ€‘μ‘°ν•©μ€ μ½˜ν¬λ¦¬νŠΈκ΅¬μ‘°κΈ°μ€€(KCI 2012)에 따라 μ„€κ³„ν•˜λ„λ‘ κ·œμ •λ˜μ–΄ μžˆλ‹€. λ”°λΌμ„œ, 이 μ—°κ΅¬μ—μ„œλŠ” ν•©μ„±ν˜• μž”κ΅μ— μ μš©ν•˜κΈ° μœ„ν•΄ ν•©μ„±ν˜• μž”κ΅λ₯Ό κ΅¬μ„±ν•˜κ³  μžˆλŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘(coping)의 ꡬ쑰적 μ„±λŠ₯을 κ²€μ¦ν•˜μ˜€λ‹€. ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ κ΅¬μ‘°μ„€κ³„λŠ” ν•­λ§Œ 및 μ–΄ν•­ 섀계기쀀(MOF 2014)μ—μ„œ μ œμ‹œν•˜κ³  μžˆλŠ” ν•˜μ€‘μ„ 근거둜 λ„λ‘œκ΅μ„€κ³„κΈ°μ€€ 해석(KRTA 2008)μ—μ„œ μ œμ‹œν•˜κ³  μžˆλŠ” β€˜λ§λšκ³Ό ν™•λŒ€κΈ°μ΄ˆ κ²°ν•©λΆ€μ˜ 섀계방법’에 따라 μ‹€λ¬Ό μ‹€ν—˜μ²΄λ₯Ό μ œμž‘ν•˜μ—¬ μ••μΆ•κ°•λ„μ‹€ν—˜κ³Ό νœ¨κ°•λ„μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ—¬ 섀계값과 μ‹€ν—˜κ°’μ„ 비ꡐ, λΆ„μ„ν•˜μ˜€λ‹€.

2. 일반 및 ν•©μ„±ν˜• μž”κ΅μ˜ νŠΉμ„± 비ꡐ

2.1 μΌλ°˜μž”κ΅μ˜ νŠΉμ„±

μž”κ΅λŠ” μ„ λ°•μ˜ μ •λ°• 및 μ„ λ°•μœΌλ‘œμ˜ μ§„μž… 등을 λͺ©μ μœΌλ‘œ μ„€μΉ˜ν•˜λŠ” κ΅λŸ‰ λ˜λŠ” μ ‘μ•ˆμ‹œμ„€μ΄λ‹€. Fig. 1은 μž”κ΅μ˜ μ’…λ₯˜μ΄λ©°, μž”κ΅λŠ” ν˜•μ‹μ μœΌλ‘œ 크게 λΆ€μž”κ΅(floating pier)와 κ³ μ •μž”κ΅(landing pier)둜 κ΅¬λΆ„λœλ‹€.

Fig. 1 Floating pier

../../Resources/kci/JKCI.2019.31.4.311/fig1.png

Fig. 2 Composite pier

../../Resources/kci/JKCI.2019.31.4.311/fig2.png

λΆ€μž”κ΅λŠ” ν•˜λΆ€κ΅¬μ‘°λ₯Ό λΆ€λ ₯체λ₯Ό μ‚¬μš©ν•˜μ—¬ λΆ€μœ ν•˜κ³ , 계λ₯˜ λ˜λŠ” λ§λšμ„ μ‚¬μš©ν•˜μ—¬ κ³ μ •ν•˜λŠ” λ°©μ‹μœΌλ‘œ μˆ˜μœ„ 변화에 따라 μœ„μΉ˜κ°€ λ³€ν•˜λŠ” νŠΉμ§•μ„ 가지고 μžˆλ‹€.

κ³ μ •μž”κ΅λŠ” ν•΄μ•ˆμ„ μ—μ„œ 직각 λ˜λŠ” μΌμ •ν•œ κ°λ„λ‘œ λŒμΆœμ‹œν‚¨ κ΅λŸ‰ ν˜•νƒœλ‘œ 일반 κ΅λŸ‰μ˜ ν˜•μ‹μ„ λ„μž…ν•˜μ—¬ μž”κ΅μ˜ ꡬ쑰 μ•ˆμ „μ„± 및 μ‚¬μš©μ„±μ„ ν–₯μƒν•œ ν˜•μ‹μ΄λ‹€.

2.2 ν”„λ¦¬μΊμŠ€νŠΈ 코핑을 μ μš©ν•œ ν•©μ„±ν˜• μž”κ΅μ˜ νŠΉμ„±

2.2.1 ν”„λ¦¬μΊμŠ€νŠΈ 코핑을 μ μš©ν•œ ν•©μ„±ν˜• μž”κ΅

ν”„λ¦¬μΊμŠ€νŠΈ 코핑을 μ μš©ν•œ ν•©μ„±ν˜• μž”κ΅λŠ” ν”„λ¦¬μΊμŠ€νŠΈ 콘크리트 λΆ€μž¬λ₯Ό μ μš©ν•˜μ—¬ κ°œλ°œν•œ μž”κ΅ ν˜•μ‹μ΄λ‹€. ν”„λ¦¬μΊμŠ€νŠΈ 코핑을 μ μš©ν•œ ν•©μ„±ν˜• μž”κ΅λŠ” ν•˜λΆ€κ΅¬μ‘°λ₯Ό ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μœΌλ‘œ κ΅¬μ„±ν•˜κ³  기쑴의 PSC 거더와 데크λ₯Ό ν™œμš©ν•˜μ—¬ μž”κ΅λ₯Ό μ™„μ„±ν•˜λŠ” 방식이닀. ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘κ³Ό PSC 거더, PSC ν…Œν¬μ˜ ν˜•νƒœ 및 ν•©μ„±ν˜• μž”κ΅μ˜ ꡬ성은 Fig. 2에 λ‚˜νƒ€λ‚΄μ—ˆλ‹€.

ν•©μ„±ν˜• μž”κ΅λŠ” μ§€λ°˜μ— κ²©μžν˜•μœΌλ‘œ μ„€μΉ˜λœ κ°•κ΄€νŒŒμΌ 상뢀에 ν•˜λΆ€μ§€μ§€λŒ€λ₯Ό μ„€μΉ˜ν•˜κ³  말뚝 상뢀에 ν”„λ¦¬μΊμŠ€νŠΈ 코핑을 μ„€μΉ˜ν•˜κ³  μ½”ν•‘ 상뢀에 PSC 거더와 데크λ₯Ό λ‹¨μˆœκ±°μΉ˜ν•œ ν›„ ν† ν•‘ 콘크리트λ₯Ό νƒ€μ„€ν•˜μ—¬ μž”κ΅λ₯Ό μ™„μ„±ν•œλ‹€. PSC 거더와 PSC λ°ν¬λŠ” ν”„λ¦¬ν…μ…˜ 콘크리트 λΆ€μž¬μ˜ μ œμž‘ 방식 쀑 ν•˜λ‚˜μΈ 둱라인 곡법(long line method)을 μ μš©ν•˜μ—¬ μ œμž‘ν•˜μ˜€λ‹€. 둱라인 곡법은 ν•˜λ‚˜μ˜ λΌμΈμ—μ„œ μ—¬λŸ¬ 개의 ν”„λ¦¬ν…μ…˜ 콘크리트 λΆ€μž¬λ₯Ό λ™μ‹œμ— ν”„λ¦¬μŠ€νŠΈλ ˆμŠ€ν•˜λŠ” 곡법이닀.

2.2.2 ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ ꡬ성 및 νŠΉμ§•

ν•©μ„±ν˜• μž”κ΅μ˜ 코핑을 μ œμž‘ν•˜λŠ” ꡬ체 μ½˜ν¬λ¦¬νŠΈλŠ” ν”„λ¦¬μΊμŠ€νŠΈλ‘œ μ œμž‘ν•˜μ—¬ μƒλΆ€κ΅¬μ‘°λ‘œλΆ€ν„° μ „λ‹¬λ˜λŠ” ν•˜μ€‘μ— 효과적으둜 μ €ν•­ν•  수 μžˆλ„λ‘ κ΅¬μ„±ν•˜κ³ , ꡐ각과 ν•©μ„±ν•˜κΈ° μœ„ν•΄ 일뢀 속 채움 콘크리트둜 ν•©μ„±ν•œλ‹€. ν”„λ¦¬μΊμŠ€νŠΈ 코핑은 PSC 거더에 κ°€μ„€ν•˜κΈ° μœ„ν•΄ Fig. 3κ³Ό 같이 말뚝 κ°€μ„€ ν›„ μ—°κ²° λΆ€μž¬ μ„€μΉ˜ν•˜κ³  ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘ κ°€μ„€ν•œ ν›„ 속 채움 콘크리트λ₯Ό νƒ€μ„€ν•˜λŠ” μˆœμ„œλ‘œ μ œμž‘ν•œλ‹€.

Fig. 3 Precast coping

../../Resources/kci/JKCI.2019.31.4.311/fig3.png

ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ λ‚΄λΆ€λŠ” Fig. 4(a)와 같이 ν”„λ¦¬μΊμŠ€νŠΈ 콘크리트의 거푸집 역할을 ν•˜λŠ” μ›λΏ”λŒ€ν˜• κ°•νŒ(ring finish palte)을 μ‚½μž…ν•˜μ˜€κ³ , μ›λΏ”λŒ€ν˜• κ°•νŒ λ‚΄λΆ€λŠ” Fig. 4(b)와 같이 말뚝과 μ—°κ²° μ‹œ 합성거동을 μœ λ„ν•˜κΈ° μœ„ν•΄ μ—°κ²° λΆ€μž¬, λ°›μΉ¨ λΆ€μž¬, 철근을 λ°°μΉ˜ν•˜μ˜€λ‹€. λ˜ν•œ, μ›λΏ”λŒ€ν˜• κ°•νŒ ν•˜λΆ€λŠ” 콘크리트 타섀 μ‹œ 거푸집 역할을 μœ λ„ν•˜κΈ° μœ„ν•΄ 링 λ§ˆκ°νŒμ„ μ›λΏ”λŒ€ν˜• κ°•νŒμ— μš©μ ‘ν•˜μ—¬ μ—°κ²°ν•˜μ˜€λ‹€.

ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ λͺ¨λ“  μ œμž‘κ³΅μ •μ€ 곡μž₯μ—μ„œ μˆ˜ν–‰ν•˜λ©° ν˜„μž₯으둜 운반된 ν”„λ¦¬μΊμŠ€νŠΈ 코핑은 μ›λΏ”λŒ€ν˜• κ°•νŒ λ‚΄λΆ€λ‘œ 말뚝이 μ‚½μž…λ˜κ³  λ°›μΉ¨ λΆ€μž¬μ— μ˜ν•΄ λ‹¨μˆœ 거치 λœλ‹€.

Fig. 4 Compose of composite pier for precast coping

../../Resources/kci/JKCI.2019.31.4.311/fig4.png

3. ν•©μ„±ν˜• μž”κ΅μ˜ ꡬ쑰섀계

μž”κ΅λŠ” ν•­λ§Œ 및 μ–΄ν•­ 섀계기쀀(MOF 2014)μ—μ„œ μ œμ‹œν•˜κ³  μžˆλŠ” 섀계 방법에 따라 μ„€κ³„ν•˜μ˜€λ‹€. ν•©μ„±ν˜• μž”κ΅λ₯Ό μ„€κ³„ν•˜κΈ° μœ„ν•΄ ν•©μ„±ν˜• μž”κ΅λ₯Ό κ΅¬μ„±ν•˜κ³  μžˆλŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ ꡬ쑰섀계λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€.

3.1 μ••μΆ•λ‚΄λ ₯

μ••μΆ•λ‚΄λ ₯에 μ˜ν•œ μ½”ν•‘ 콘크리트의 μˆ˜μ§μ§€μ••μ‘λ ₯은 λ„λ‘œκ΅μ„€κ³„κΈ°μ€€ ν•΄μ„€(KRTA 2008)μ—μ„œ μ œμ‹œν•œ 식(1)κ³Ό κ°™λ‹€. 식(1)μ—μ„œ 콘크리트의 ν—ˆμš©μ§€μ••μ‘λ ₯은 μƒμ‹œμ™€ 지진 μ‹œμ— λŒ€ν•˜μ—¬ 식(2)와 식(3)κ³Ό 같이 κ³ λ €ν•˜μ˜€λ‹€.

(1)
$f_{cv}=\dfrac{P_{N\max}}{\dfrac{\pi}{4}D_{B}^{2}}\le f_{ca}or f_{ca}'$

(2)
$f_{ca1}=0.25f_{ck}$

(3)
$f_{ca1}'=1.33f_{ca}=1.33\times\left(0.25f_{ck}\right)$

μ—¬κΈ°μ„œ, $f_{cv}$λŠ” μˆ˜μ§μ§€μ••μ‘λ ₯이고, $P_{N\max}$λŠ” μƒμ‹œμ™€ 지진 μ‹œ, ꡐ각머리에 μž‘μš©ν•˜λŠ” μ΅œλŒ€ 수직λ ₯, $D_{B}$λŠ” ꡐ각의 μ™Έκ²½, $f_{ca1}$λŠ” μƒμ‹œ 콘크리트의 ν—ˆμš©μ§€μ••μ‘λ ₯, $f_{ca1}'$λŠ” 지진 μ‹œ 콘크리트의 ν—ˆμš©μ§€μ••μ‘λ ₯, $f_{ck}$λŠ” 콘크리트의 섀계기쀀압좕강도, $f_{ca}$λŠ” μƒμ‹œ 콘크리트의 ν—ˆμš©νœ¨μ••μΆ•μ‘λ ₯, $f_{ca}'$λŠ” 지진 μ‹œ 콘크리트의 ν—ˆμš©νœ¨μ••μΆ•μ‘λ ₯이닀.

Fig. 5 Virtual reinforced concrete section

../../Resources/kci/JKCI.2019.31.4.311/fig5.png

3.2 νœ¨λ‚΄λ ₯

가상 철근콘크리트의 λ‹¨λ©΄μ˜ 응λ ₯은 λ„λ‘œκ΅μ„€κ³„κΈ°μ€€ ν•΄μ„€(KRTA 2008)에 μ–ΈκΈ‰λ˜μ–΄ μžˆλ“―μ΄ Fig. 5와 같이 상뢀 ꡬ쑰물의 ν•˜μ€‘μ— μ˜ν•΄ 각 μ—΄μ˜ 말뚝머리둜 μž‘μš©ν•˜λŠ” ν•˜μ€‘μ˜ ν˜•νƒœλ‘œ κ²€ν† ν•  수 μžˆλ‹€. ν•˜λ‚˜λŠ” λ§λšλ¨Έλ¦¬μ— μž‘μš©ν•˜λŠ” μΆ•λ°©ν–₯ μ΅œμ†Œ μ••μΆ•λ‚΄λ ₯κ³Ό μ„€κ³„νœ¨λͺ¨λ©˜νŠΈμ΄κ³ , λ‹€λ₯Έ ν•˜λ‚˜λŠ” λ§λšλ¨Έλ¦¬μ— μž‘μš©ν•˜λŠ” μΆ•λ°©ν–₯ μ΅œλŒ€ 인발λ ₯κ³Ό μ„€κ³„νœ¨λͺ¨λ©˜νŠΈμ΄λ‹€.

ν•΄λ‹Ή ꡬ쑰물의 말뚝머리의 ν•˜μ€‘ 쑰건에 따라 가상 철근콘크리트 단면을 κ°€μ •ν•˜μ—¬ μ½˜ν¬λ¦¬νŠΈμ™€ 철근의 응λ ₯을 κ²€ν† ν•œλ‹€. μ—¬κΈ°μ„œ 가상 철근콘크리트 λ‹¨λ©΄μ˜ 직경은 말뚝 직경에 200 mmλ₯Ό λ”ν•œ 길이둜 ν•˜λ©°, 계산할 λ•Œ μƒμ‹œμ™€ 지진 μ‹œλ‘œ κ΅¬λΆ„ν•˜μ—¬, ꡐ좕방ν–₯κ³Ό ꡐ좕직각방ν–₯에 μƒκΈ°λŠ” μ™Έλ ₯에 λŒ€ν•΄μ„œ μ‹€μ‹œν•˜μ˜€λ‹€. 콘크리트의 νœ¨μ••μΆ•μ‘λ ₯κ³Ό λ³΄κ°•μ² κ·Όμ˜ 휨인μž₯응λ ₯은 식(4)와 식(5)이닀(KRTA 2008). 식(4), 식(5)μ—μ„œ 콘크리트의 νœ¨μ••μΆ•μ‘λ ₯κ³„μˆ˜($C$), λ³΄κ°•μ² κ·Όμ˜ 휨인μž₯응λ ₯κ³„μˆ˜($S$)λŠ” $e/r$($e$: νŽΈμ‹¬)의 ν•¨μˆ˜μ΄λ‹€.

(4)
$f_{c}=\dfrac{M}{r^{3}}C <f_{ca}$

(5)
$f_{s}=\dfrac{M}{r^{3}}Sn <f_{sa}$

μ—¬κΈ°μ„œ, $f_{c}$λŠ” 콘크리트 νœ¨μ••μΆ•μ‘λ ₯, $f_{s}$λŠ” 철근의 휨인μž₯응λ ₯, $f_{ca}$λŠ” μƒμ‹œ 콘크리트의 ν—ˆμš©νœ¨μ••μΆ•μ‘λ ₯, $f_{sa}$λŠ” μƒμ‹œ 철근의 ν—ˆμš©νœ¨μΈμž₯응λ ₯, $r$은 가상 콘크리트 λ‹¨λ©΄μ˜ λ°˜μ§€λ¦„, $M$은 μ„€κ³„νœ¨λͺ¨λ©˜νŠΈ, $C$λŠ” 콘크리트의 νœ¨μ••μΆ•μ‘λ ₯κ³„μˆ˜, $S$λŠ” 보강 철근의 휨인μž₯응λ ₯κ³„μˆ˜, $n$은 철근의 κ°œμˆ˜μ΄λ‹€.

4. ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ ꡬ쑰 μ•ˆμ „μ„±

ν”„λ¦¬μΊμŠ€νŠΈ 코핑을 μ μš©ν•œ 쑰립식 ν•©μ„±ν˜• μž”κ΅μ˜ ꡬ쑰성λŠ₯을 ν‰κ°€ν•˜κΈ° μœ„ν•΄ ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ μ••μΆ•κ°•λ„μ‹€ν—˜κ³Ό νœ¨κ°•λ„μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. μ‹€ν—˜μ— μ‚¬μš©ν•œ μ‹€ν—˜μ²΄λŠ” SD400 μ² κ·Όκ³Ό SS400 κ°•μ’…μ˜ κ°•μž¬λ₯Ό μ‚¬μš©ν•˜μ—¬ μ œμž‘ν•˜μ˜€μœΌλ©°, λ§λšμ€ SKK400 κ°•μ’…μœΌλ‘œ μ œμž‘ν•˜μ˜€λ‹€. λ˜ν•œ, μ›λΏ”λŒ€ν˜• κ°•νŒμ˜ 속 채움 μ½˜ν¬λ¦¬νŠΈμ™€ ꡬ체 콘크리트 μ„€κ³„κΈ°μ€€μ••μΆ•κ°•λ„λŠ” 각각 35 MPa, 50 MPa둜 μ œμž‘ν•˜μ˜€λ‹€.

μ‹€ν—˜μ²΄λŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘κ³Ό 말뚝의 일뢀가 ν•©μ„±λœ ν˜•νƒœλ‘œ ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ μ••μΆ• 저항성은 ν•©μ„±λœ λ§λšμ— 수직 λ°©ν–₯ ν•˜μ€‘μ„ μž¬ν•˜ν•˜μ˜€λ‹€. λ˜ν•œ, νœ¨κ°•λ„λŠ” 지그λ₯Ό μ‚¬μš©ν•˜μ—¬ λ§λšμ— μˆ˜ν‰ ν•˜μ€‘μ„ μž¬ν•˜ν•˜μ˜€λ‹€.

4.1 μ••μΆ•κ°•λ„μ‹€ν—˜

4.1.1 μ‹€ν—˜λ°©λ²•

압좕강도 μ‹€ν—˜μ²΄λŠ” λ§λšμ— 쀑λ ₯ λ°©ν–₯으둜 ν•˜μ€‘μ„ μž¬ν•˜ν•  경우 μˆ˜μ§μ§€μ•• νŒŒκ΄΄κ°€ λ°œμƒν•  수 μžˆλ‹€. λ”°λΌμ„œ, ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ μ••μΆ•κ°•λ„μ‹€ν—˜μ€ μ—°κ²° λΆ€μž¬μ™€ λ°›μΉ¨ λΆ€μž¬μ˜ μœ λ¬΄μ— 따라 1-A(μ—°κ²° λΆ€μž¬, λ°›μΉ¨ λΆ€μž¬ λ§€μž…), 1-B(μ—°κ²° λΆ€μž¬, λ°›μΉ¨ λΆ€μž¬ 배제)둜 κ΅¬λΆ„ν•˜μ—¬ κΈ°μ‘΄ 연ꡬ(Kim and Lee 2012)λ₯Ό μ°Έκ³ ν•˜μ—¬ μˆ˜ν–‰ν•˜μ˜€λ‹€. μ‹€ν—˜μ²΄μ˜ μ—°λ‹¨μ—μ„œ μ•½ 215 mm의 뢀뢄을 베이슀 블둝(base block)κ³Ό 슀크λ₯˜ 잭(screw jack)을 μ΄μš©ν•˜μ—¬ κ³ μ •ν•˜μ˜€μœΌλ©°, λ§λšμ— μˆ˜μ§ν•˜μ€‘μ„ μž¬ν•˜ν•˜μ˜€λ‹€.

Fig. 6 Compressive strength test set up

../../Resources/kci/JKCI.2019.31.4.311/fig6.png

ν•˜μ€‘ 증가에 λ”°λ₯Έ μ½”ν•‘μ˜ ꡬ쑰적 거동을 λΆ„μ„ν•˜κΈ° μœ„ν•΄ Fig. 6(a)와 같이 μ½”ν•‘ ν•˜λΆ€μ— λ³€μœ„κ³„λ₯Ό μ„€μΉ˜ν•˜μ˜€λ‹€. λ˜ν•œ, Fig. 6(b)와 같이 H ν˜•κ°•(S1~S2), λ°›μΉ¨ λΆ€μž¬(S3~S8), 상뢀 μ² κ·Ό(S9~S12), 수직 μ² κ·Ό 및 κ°•κ΄€(S13~S16), κ±Έμ‡ νŒ μš©μ ‘λΆ€(S17~ S20)에 κ°•μž¬ κ²Œμ΄μ§€λ₯Ό λΆ€μ°©ν•˜μ˜€μœΌλ©° μ‹€ν—˜μ²΄μ˜ 쀑앙뢀 및 μ€‘μ•™μ—μ„œ μ‚¬λ°©μœΌλ‘œ 200 mm 떨어진 지점에 총 5개의 LVDTλ₯Ό μ„€μΉ˜ν•˜μ˜€λ‹€(Kwon et al. 2018). λ˜ν•œ, Fig. 6(c)와 6(d)λŠ” 각각 1-A λΆ€μž¬, 1-B λΆ€μž¬μ˜ 단면도이닀. μ••μΆ•κ°•λ„μ‹€ν—˜μ˜ 전경은 Fig. 7κ³Ό κ°™λ‹€.

Fig. 7 Compressive strength test

../../Resources/kci/JKCI.2019.31.4.311/fig7.png

4.1.2 μ‹€ν—˜κ²°κ³Ό

ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ μ••μΆ•κ°•λ„μ‹€ν—˜ κ²°κ³Ό Fig. 8κ³Ό 같이 말뚝과 ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘ μ—°κ²°λΆ€μ—μ„œ 수직 λ°©ν–₯으둜 λ³€μœ„κ°€ λ°œμƒν•˜μ˜€λ‹€. μ‹€ν—˜μ²΄μ˜ 파괴 ν˜•μƒμ€ 지압 파괴둜 λ‚˜νƒ€λ‚¬λ‹€. λ˜ν•œ, 지점 쑰건의 영ν–₯으둜 μ‹€ν—˜μ²΄ μΈ‘λ©΄μ—μ„œ 전단 균열이 일뢀 λ°œμƒν•˜μ˜€λ‹€.

μ‹€ν—˜μ²΄μ˜ μ΅œλŒ€ν•˜μ€‘, μ„€κ³„ν•˜μ€‘μ€ Table 1에 μ •λ¦¬ν•˜μ˜€λ‹€. μ—°κ²° λΆ€μž¬μ™€ λ°›μΉ¨ λΆ€μž¬μ˜ μœ λ¬΄μ— λ”°λ₯Έ μ‹€ν—˜μ²΄μ˜ μ••μΆ•κ°•λ„λŠ” μ•½ 1.17λ°° 차이λ₯Ό λ³΄μ˜€μœΌλ©°, ν•˜λΆ€ 철근이 항볡할 λ•Œμ˜ ν•˜μ€‘μ€ μ„€κ³„ν•˜μ€‘μ— λΉ„ν•΄ 각각 5.10λ°°, 4.34λ°° 크게 λ‚˜νƒ€λ‚¬λ‹€.

Fig. 8 Failure mode of compressive strength test specimen

../../Resources/kci/JKCI.2019.31.4.311/fig8.png

Table 1 The comparison of compressive strength test results

Specimen

1-A

1-B

A/B

Ultimate load (β‘ , kN)

6,116.47

5,227.54

1.17

Steel yield load (β‘‘, kN)

5,778.03

4,922.39

1.17

Design load (β‘’, kN)

1,133

-

β‘ /β‘’

5.40

4.61

-

β‘‘/β‘’

5.10

4.34

-

Fig. 9 The relation between the load and disp. at compressive strength test

../../Resources/kci/JKCI.2019.31.4.311/fig9.png

Fig. 10 The relation between the load and strain at compressive strength test (upper reinforcement)

../../Resources/kci/JKCI.2019.31.4.311/fig10.png

각 μ‹€ν—˜μ²΄μ˜ ν•˜μ€‘-λ³€μœ„ κ΄€κ³„λŠ” Fig. 9에 λ‚˜νƒ€λƒˆλ‹€. Fig. 10κ³Ό Fig. 11의 ν•˜μ€‘-λ³€ν˜•λ₯  κ·Έλž˜ν”„λ₯Ό λΆ„μ„ν•œ κ²°κ³Ό μ‹€ν—˜μ²΄ ν•˜λΆ€μ— λ°°μΉ˜ν•œ 철근이 κ°€μž₯ λ¨Όμ € 항볡강도에 λ„λ‹¬ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ ν˜„μƒμ€ μ½”ν•‘ λ©΄μ™Έλ‘œ λ°œμƒν•˜λŠ” λ³€μœ„λ‘œ 인해 ν•˜λΆ€ 철근이 μ €ν•­ν•˜λ©΄μ„œ λ°œμƒν•œ κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€.

Fig. 11 The relation between the load and strain at compressive strength test (bottom reinforcement)

../../Resources/kci/JKCI.2019.31.4.311/fig11.png

4.2 νœ¨κ°•λ„μ‹€ν—˜

4.2.1 μ‹€ν—˜λ°©λ²•

νœ¨κ°•λ„μ‹€ν—˜μ€ μ—°κ²° λΆ€μž¬μ˜ μœ λ¬΄μ— 따라 2A(μ—°κ²° λΆ€μž¬ λ§€μž…), 2B(μ—°κ²° λΆ€μž¬ 배제)둜 κ΅¬λΆ„ν•˜μ—¬ μˆ˜ν–‰ν•˜μ˜€κ³ , μ‹€ν—˜μ²΄μ˜ μ—°λ‹¨μ—μ„œ μ•½ 250 mm의 뢀뢄에 κ°•μž¬ 볼트λ₯Ό μ‚¬μš©ν•˜μ—¬ λ°”λ‹₯κ³Ό κ³ μ •ν•˜μ˜€λ‹€(Kim et al. 2018). ν•˜μ€‘μ€ 2,000 kN μš©λŸ‰μ˜ κ°€λ ₯κΈ°(actuator)λ₯Ό μ‚¬μš©ν•˜μ—¬ 3 mm/min의 μ†λ„λ‘œ μž¬ν•˜ν•˜μ˜€λ‹€. Fig. 12λŠ” νœ¨κ°•λ„μ‹€ν—˜ 전경이닀.

Fig. 12 Flexural bending strength test

../../Resources/kci/JKCI.2019.31.4.311/fig12.png

4.2.2 μ‹€ν—˜κ²°κ³Ό

ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ νœ¨κ°•λ„ μ‹€ν—˜κ²°κ³Ό Fig. 13κ³Ό 같이 말뚝과 μ½”ν•‘μ˜ μ—°κ²°λΆ€μ—μ„œ νœ¨νŒŒκ΄΄κ°€ λ°œμƒν•˜μ˜€λ‹€. 링 λ§ˆκ°νŒμ€ 휨λͺ¨λ©˜νŠΈμ˜ 영ν–₯으둜 인μž₯μΈ‘μ—μ„œ λ³€ν˜•μ΄ λ°œμƒν•˜μ˜€λ‹€. λ˜ν•œ, 링 λ§ˆκ°νŒμ€ κ°•κ΄€ ν•˜λΆ€μ˜ 콘크리트λ₯Ό κ΅¬μ†ν•˜μ—¬ νŒŒκ΄΄κ°€ μ§€μ—°λ˜λŠ” κ²½ν–₯을 λ³΄μ˜€λ‹€.

Fig. 13 Failure of flexural strength test specimen

../../Resources/kci/JKCI.2019.31.4.311/fig13.png

Table 2 Comparison result of flexural strength test

Specimen

2A

2B

A/B

Ultimate load (β‘ , kN)

570.19

303.06

1.88

Steel pipe yield load (β‘‘, kN)

494.64

281.33

1.76

Design load (β‘’, kN)

108.00

-

β‘ /β‘’

5.28

2.81

-

β‘‘/β‘’

4.58

2.60

-

Fig. 14 Flexural test of relationship between the load and the displacement

../../Resources/kci/JKCI.2019.31.4.311/fig14.png

μ—°κ²° λΆ€μž¬μ˜ μœ λ¬΄μ— λ”°λ₯Έ νœ¨κ°•λ„ μ‹€ν—˜μ²΄μ˜ μ΅œλŒ€ ν•˜μ€‘μ€ Table 2에 μ •λ¦¬ν•˜μ˜€κ³ , νœ¨κ°•λ„μ‹€ν—˜μ˜ ν•˜μ€‘-λ³€μœ„ κ΄€κ³„λŠ” Fig. 14에 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. νœ¨κ°•λ„ μ‹€ν—˜μ²΄μ˜ μ΅œλŒ€ν•˜μ€‘μ€ μ„€κ³„ν•˜μ€‘μ— λΉ„ν•΄ 큰 강도λ₯Ό λ‚˜νƒ€λƒˆλ‹€. κ·Έ κ²°κ³Ό νœ¨κ°•λ„ μ‹€ν—˜μ²΄λŠ” μΆ©λΆ„ν•œ μ•ˆμ „μ„±μ„ ν™•λ³΄ν•œ κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬μœΌλ©°, μ½”ν•‘ 내뢀에 μ„€μΉ˜λœ μ—°κ²° λΆ€μž¬λŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ νœ¨κ°•λ„μ˜ 1.88λ°° 증가함을 μ•Œ 수 μžˆμ—ˆλ‹€. λ˜ν•œ, 강관이 항볡할 λ•Œμ˜ ν•˜μ€‘(92.00 kN)은 μ„€κ³„ν•˜μ€‘μ— λΉ„ν•΄ 2AλŠ” 4.58λ°°, 2BλŠ” 2.60λ°° 크게 λ‚˜νƒ€λ‚¬κΈ° λ•Œλ¬Έμ— μΆ©λΆ„ν•œ μ•ˆμ „μ„±μ„ ν™•λ³΄ν•œ κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬μœΌλ©°, 강관이 ν•­λ³΅ν•˜κΈ° μ „κΉŒμ§€ μ—°κ²° λΆ€μž¬λŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ νœ¨κ°•λ„λ₯Ό μ•½ 1.76λ°° 증가함을 μ•Œ 수 μžˆμ—ˆλ‹€.

μ‹€ν—˜μ²΄ 내에 μ„€μΉ˜ν•œ λ³€ν˜•λ₯  κ²Œμ΄μ§€μ˜ ν•˜μ€‘-λ³€ν˜•λ₯  관계λ₯Ό λΆ„μ„ν•œ κ²°κ³Ό Fig. 15의 S7, S8 μœ„μΉ˜μΈ κ°•κ΄€ ν•˜λΆ€μ—μ„œ κ°€μž₯ λ¨Όμ € 항볡에 λ„λ‹¬ν•˜μ˜€κ³  μ½”ν•‘λΆ€μ—μ„œλŠ” 파괴 거동을 보이지 μ•Šμ•˜λ‹€. λ˜ν•œ, μ—°κ²° λΆ€μž¬ κ±Έμ‡ νŒ μœ„μΉ˜μ—μ„œ ν•˜μ€‘μ΄ μ¦κ°€ν• μˆ˜λ‘ 응λ ₯이 μ¦κ°€ν•˜μ˜€μœΌλ©° ν•­λ³΅λ³€ν˜•λ₯ μ— λ„λ‹¬ν•˜μ§€ μ•Šμ•˜λ‹€.

Fig. 15 Flexural test of relationship between the load and the strain (steel pile)

../../Resources/kci/JKCI.2019.31.4.311/fig15.png

5. κ²° λ‘ 

이 μ—°κ΅¬λŠ” ν”„λ¦¬μΊμŠ€νŠΈ 코핑을 μ μš©ν•œ 쑰립식 ν•©μ„±ν˜• μž”κ΅μ˜ ꡬ쑰적 거동을 μ‹€ν—˜μ„ 톡해 κ²€μ¦ν•˜μ˜€λ‹€. 이 연ꡬλ₯Ό 톡해 얻은 κ²°κ³ΌλŠ” λ‹€μŒκ³Ό κ°™λ‹€.

1) μ••μΆ•κ°•λ„μ‹€ν—˜ κ²°κ³Ό, μ‹€ν—˜μ²΄ 1-A와 1-BλŠ” 말뚝과 ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘ μ—°κ²°λΆ€μ—μ„œ κ³Όλ„ν•œ 수직 λ³€μœ„κ°€ λ°œμƒν•œ ν›„ νŒŒκ΄΄λ˜μ—ˆμœΌλ©°, μ‹€ν—˜μ²΄μ˜ νŒŒκ΄΄ν˜•μƒμ€ 수직 μ§€μ••μœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€.

β‘  각 μ‹€ν—˜μ²΄μ˜ μ΅œλŒ€ν•˜μ€‘μ€ 1-Aμ—μ„œ 6,116.47 kN, 1-Bμ—μ„œ 5,227.54 kN으둜 λ‚˜νƒ€λ‚¬μœΌλ©°, μ„€κ³„ν•˜μ€‘μ— λŒ€ν•˜μ—¬ 1-AλŠ” μ•½ 5.40λ°°, 1-BλŠ” μ•½ 4.61λ°° 큰 강도λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆκΈ° λ•Œλ¬Έμ— μΆ©λΆ„ν•œ μ•ˆμ „μ„±μ„ ν™•λ³΄ν•œ κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ˜ν•œ, μ—°κ²° λΆ€μž¬μ™€ λ°›μΉ¨ λΆ€μž¬λŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ 압좕강도λ₯Ό μ•½ 1.17λ°° μ¦κ°€μ‹œν‚€λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬μœΌλ©°, ν•˜λΆ€ 철근이 항볡할 λ•Œμ˜ ν•˜μ€‘μ€ 1-Aμ—μ„œ 5,778.03 kN, 1-Bμ—μ„œ 4,922.39 kN으둜 λ‚˜νƒ€λ‚¬λ‹€.

β‘‘ ν•˜λΆ€ 철근이 항볡할 λ•Œ ν•˜μ€‘μ€ μ„€κ³„ν•˜μ€‘μ— λŒ€ν•˜μ—¬ 1-Aμ—μ„œ 5.10λ°°, 1-Bμ—μ„œ 4.34λ°° 크게 λ‚˜νƒ€λ‚¬κΈ° λ•Œλ¬Έμ— μΆ©λΆ„ν•œ μ•ˆμ „μ„±μ„ ν™•λ³΄ν•˜κ³  μžˆλŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬μœΌλ©°, ν•˜λΆ€ 철근이 ν•­λ³΅ν•˜κΈ° μ „κΉŒμ§€ μ—°κ²° λΆ€μž¬μ™€ λ°›μΉ¨ λΆ€μž¬λŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ 압좕강도λ₯Ό μ•½ 1.17λ°° μ¦κ°€μ‹œν‚€λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€.

2) νœ¨κ°•λ„μ‹€ν—˜ κ²°κ³Ό, μ‹€ν—˜μ²΄ 2A와 2B의 링 λ§ˆκ°νŒμ—μ„œ 휨λͺ¨λ©˜νŠΈλ‘œ 인해 κ°€λ ₯ μœ„μΉ˜ 인μž₯μΈ‘μ—μ„œ κ³Όλ„ν•œ λ³€ν˜•μ΄ λ°œμƒν•œ ν›„ νŒŒκ΄΄λ˜μ—ˆλ‹€. λ˜ν•œ, 링 λ§ˆκ°νŒμ€ κ°•κ΄€ ν•˜λΆ€μ˜ 콘크리트λ₯Ό κ΅¬μ†ν•˜μ—¬ νŒŒκ΄΄κ°€ μ§€μ—°λ˜λŠ” κ²½ν–₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€.

β‘  각 μ‹€ν—˜μ²΄μ˜ μ΅œλŒ€ν•˜μ€‘μ€ 2Aμ—μ„œ 570.19 kN, 2-Bμ—μ„œ 303.06 kN으둜 λ‚˜νƒ€λ‚¬μœΌλ©°, μ„€κ³„ν•˜μ€‘μ— λŒ€ν•˜μ—¬ 2-AλŠ” μ•½ 5.28λ°°, 2-BλŠ” μ•½ 2.81λ°° 큰 강도λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆκΈ° λ•Œλ¬Έμ— μΆ©λΆ„ν•œ μ•ˆμ „μ„±μ„ ν™•λ³΄ν•œ κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ˜ν•œ, μ—°κ²° λΆ€μž¬λŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ νœ¨κ°•λ„λ₯Ό μ•½ 1.88λ°° μ¦κ°€μ‹œν‚€λ©°, 강관이 항볡할 λ•Œμ˜ ν•˜μ€‘μ€ 2-Aμ—μ„œ 494.64 kN, 2Bμ—μ„œ 281.33 kN으둜 λ‚˜νƒ€λ‚¬λ‹€.

β‘‘ 강관이 항볡할 λ•Œμ˜ ν•˜μ€‘μ€ μ„€κ³„ν•˜μ€‘μ— λŒ€ν•˜μ—¬ 2Aμ—μ„œ μ•½ 4.58λ°°, 2Bμ—μ„œ μ•½ 2.60λ°° 크게 λ‚˜νƒ€λ‚¬κΈ° λ•Œλ¬Έμ— μΆ©λΆ„ν•œ μ•ˆμ „μ„±μ„ ν™•λ³΄ν•˜κ³  μžˆλŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬μœΌλ©°, 강관이 ν•­λ³΅ν•˜κΈ° μ „κΉŒμ§€ μ—°κ²° λΆ€μž¬λŠ” ν”„λ¦¬μΊμŠ€νŠΈ μ½”ν•‘μ˜ νœ¨κ°•λ„λ₯Ό μ•½ 1.76λ°° μ¦κ°€μ‹œν‚€λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€.

References

1 
Choi E. S., Lee J. W., Kwark J. W, KCI 2017 Fall Conference. 1-3 November 2018. Andong, Korea, A Study on the Performance Evaluation of the Reduced Specimen of Floating Bridge. (In Korean), Korea Concrete Institute (KCI), pp. 213-214Google Search
2 
Ham G. S., Lim N. -H., Park J. -S., , Evaluation of Structural Safety about the Bending and Torsion of Superstructure of the Fish-bone Girder Pier (In Korean), Journal of the Korea Academia-Industrial Cooperation Society, Vol. 14, No. 4, pp. 2000-2005DOI
3 
Hong S. Y., 2008, Development of Design Technology of Very Large Floating Structures. Technical Report (In Korean), Ministry of Oceans and FisheriesGoogle Search
4 
2012, KCI Concrete Design Code and Commentary. Seoul, Korea (In Korean), Korea Concrete Institute (KCI)Google Search
5 
Kim J. W., Lee C. H., 2012, Punching Shear Strength of CFT Column to RC Flat Plate Connections Reinforced with Shearhead (In Korean), Journal of Korean Society of Steel Construction, Vol. 24, No. 4, pp. 422-423DOI
6 
Kim S. Y., Yoo J. H., Kim S. H., Kim H. G., Kim S. I., The 29th KSSC Annual Conference. 30 May 2018. Mokpo, Korea, Evaluation of Flexural Behavior of PSC Girder and Deck in SPC Piers. (In Korean), The Korean Society of Steel Construction (KSSC), pp. 157-158Google Search
7 
2008, Korea Highway Bridge Design Code. Seoul, Korea (In Korean), Korea Road and Transportation Association (KRTA)Google Search
8 
Kwon S. C., Kim S. H., Choi W. C., KCI 2018 Spring Conference. 2-4 May 2018. Changwon, Korea, Determination of Indentation Strength for Precast Coping Embedded with Connector and Support Member. (In Korean), Korea Concrete Institute (KCI), pp. 39-40Google Search
9 
Lee S. -D., Park S. -H., 2016, Wave Response Analysis for Ponton-type Pier: Very Large Floating Structure (In Korean), Journal of the Korean Society of Marine Environment & Safety, Vol. 22, No. 1, pp. 82-89Google Search
10 
2014, Harbors and Fishing port Design Code. Sejong, Korea (In Korean), Ministy of Oceans and Fisheries (MOF)Google Search
11 
Park H. S., Park H. S., Ahn I. S., 2009, The Experimental Study of Distribution Characteristics of Lift- force Acting under Pier Deck (In Korean), Journal of the Korean Society of Civil Engineers, Vol. 29, No. 1B, pp. 83-90Google Search
12 
Park S. B., Kim J. Y., 2008, Application of the Lateral Subgrade Reaction Modulus in Landing Pier. (In Korean), Korean Geotechnical Society Fall National Conference, Vol. 1, pp. 707-1-711Google Search
13 
Yoo S. R., Park J. S., Yoon K. Y., 2011, A Numerical Study on Performance-Based Design for Pier and Superstructure in Pile Supported Modular Pedestrian Pier. (In Korean), Journal of the Korean Society of Hazard Mitigation, Vol. 11, No. 5, pp. 63-73Google Search
14 
Yoon S. J., Lim H. J., Lee S. H., KCI 2016 Spring Conference. 11-13 May 2018. Yeosu, Korea, Section Optimizing and Load-Capacity Test of SUPER Concrete Pontoon. (In Korean), Korea; Korea Concrete Institute (KCI), pp. 137-138Google Search