김예진
(Ye-Jin Kim)
1
이순환
(Soon-Hwan Lee)
2
김재규
(Jae-Gyu Kim)
3
최명성
(Myoung-Sung Choi)
4†
-
단국대학교 토목환경공학과 석사과정
(Graduate Student, Department of Civil Environmental Engineering, Dankook University,
Yongin 16890, Rep. of Korea)
-
주식회사 브리콘 대표이사
(C.E.O, Bricon Co., Ltd., Seongnam 13631, Rep. of Korea)
-
주식회사 브리콘 선임연구원
(Senior Researcher, Corporate R&D Center・Bricon Co., Ltd., Seongnam 13631, Rep. of
Korea)
-
단국대학교 토목환경공학과 교수
(Professor, Department of Civil Environmental Engineering, Dankook University, Yongin
16890, Rep. of Korea)
Copyright © Korea Concrete Institute(KCI)
키워드
콘크리트 부유체, 구조거동, 외력하중, 파랑하중, AQWA-structural
Key words
floating concrete, structural behavior, external force, wave load, AQWA-structural
1. 서 론
태양광은 자원이 무한하고 발전 원리와 구조가 단순하여 친환경성, 보급 용이성, 경제성을 두루 갖춘 신재생 에너지이다. 국제에너지기구(IEA)에 따르면
2021년 기준 전 세계에서 신규 설치된 태양광 설비용량은 174 GW로 1년 전보다 20 % 증가하였다(Oliveira and Stokkermans 2020). 국내의 경우 2012년부터 RPS(renewable energy portfolio standard, 신재생에너지 의무할당제)제도를 시행하여 신재생
에너지의 중요성을 강조하고 있다(Kim et al. 2017).
그러나 국내 대부분의 태양광 발전 방식이 산림지역에 입지하면서 생태계 및 지형, 경관 훼손 등 환경에 부정적 영향을 미친다. 영농형 태양광의 경우
농지 위에 설치하는 방법이지만, 발전효율 저하와 농산물 수확량 감소 등의 문제점을 가지고 있다(Kim et al. 2016; Choi et al. 2021).
이에 반해 수상 태양광 발전 기술은 저수지 등 유휴부지를 활용하여 환경파괴를 최소화하고 주변 방해 구조물이 없어 에너지 효율을 극대화할 수 있다.
또한 바닷물에 의한 냉각 작용으로 태양광 모듈의 열을 낮춰 육상 태양광 발전 기술에 비해 발전효율을 평균 11 % 증가시키는 이점이 있어 각광 받고
있다(Jeong et al. 2010; Choi 2014; Sahu et al. 2016; Kumar et al. 2021).
육상 태양광 발전 기술은 구조적인 지지물이 있어 외부 하중을 안정적으로 견디도록 설계할 수 있다. 이와 달리 수상 태양광 발전 기술은 수면 위에 설치하므로
유동적인 해상조건에서도 안전성을 유지할 수 있는 부유식 구조체가 필요하다(Choi et al. 2013; Park et al. 2013; Kim and Kim 2017). 기존 부유체의 형태는 크게 폰툰형과 반잠수식으로 구분된다. 일반적으로 많이 활용되는 폰툰형은 형태가 단순하고 경제적이다. 그러나 파랑에 취약하고
단면력이 크게 발생하는 문제점이 있다. 반면 반잠수식은 파랑에 대해 안정적이지만 높이 방향으로 긴 단면을 요구한다. 이에 충분한 수심이 확보된다면
안전성 측면에서 반잠수식이 유리하다고 할 수 있다(Jeong et al. 2011; Rim et al. 2011; Seo et al. 2018).
기존 부유체의 사용재료는 고밀도폴레에틸렌(high density polyethylene, HDPE), 섬유강화복합재료(fiber reinforced
polymer, FRP) 등이다. 이는 부식에 강하고 가벼우며, 높은 내구성으로 구조적 안전성을 확보할 수 있다. 그러나 자외선에 의한 열화와 피로파괴로
인한 환경오염 우려의 단점이 있다. 또한 비교적 가벼운 중량으로 강한 파랑에 대한 안전성 확보가 어렵고 이에 따라 상당한 유지관리비용이 요구된다(Jeong et al. 2020).
따라서 본 연구에서는 반잠수식 수상 태양광 발전 기술을 위해 콘크리트를 사용하여 내구성과 내화성이 우수하고 강한 외부 환경에서도 부유 안전성을 확보할
수 있는 부유체를 연구하였다. 파랑하중 조건에서 콘크리트 부유체의 정확한 구조거동 평가를 위해 수리모형실험을 실시하였다. 이를 통해 부유체의 파랑
안전성을 평가하고, 동수역학해석 프로그램인 ANSYS AQWA 2021 R2를 이용하여 실험 결과와 비교 분석하였다. 그 결과 실험과 해석의 6 자유도
결과값의 유사성을 확인하고 신뢰성 있는 해석 방법을 도출하였다. 최종적으로 검증된 해석 방법을 실 구조물 콘크리트 부유체에 적용하여 Lee and Jeong (2011)이 수행한 AQWA-structural 연동해석을 통해 파랑하중 조건에서 개발된 콘크리트 부유체의 구조거동 및 안전성을 평가하고자 하였다.
2. 작용외력 조건 하에 구조안전성 평가
2.1 대상 부유체 모델링
본 연구에서는 파랑하중에 대한 안전성 평가 이전에 작용외력 조건에서의 구조적 안전성을 평가하고자 하였다. 이를 위해 ANSYS Structural
프로그램을 사용하였으며 실 구조물과 동일한 크기로 해석을 진행하였다. 실 구조물은 Fig. 1과 같이 2 m(W)×2 m(L)×1.4 m(H)의 콘크리트 블록 4개와 8가닥의 100 mm(B1)×100 mm(B2)×6 mm(t)×7 m(L)
CFT(concrete filled tube)연결부로 이루어져 있다. 전체 크기는 7 m(W)×7 m(L)×1.4 m(H)이며 건현과 흘수는 각각
0.3 m, 1.1 m이다. 이때, 콘크리트 부유체의 총 높이는 보수적인 설계를 위해 건현 0.3 m를 확보하고 상하 CFT가 모두 잠겼을 때를 가정하여
계산하였다. 내부 보강재는 GFRP(glass fiber reinforced polymer)를 사용하였다.
Fig. 1 Actual floating concrete
해석을 위한 콘크리트 블록은 solid 요소를 적용하고 CFT 및 GFRP는 beam 요소로 모델링하였으며 Fig. 2와 같다. 경계조건은 보수적인 평가를 위해 계류지점에서 단순지지 조건을 적용하였으며, 스프링 요소를 이용한 탄성지점으로 부력의 영향을 모사하였다.
이때, 스프링계수는 식 (1)을 이용하여 구조물의 크기와 유체의 특성에 따라 결정된다(Huang and Moan 2005; Esedig et al. 2009; Thanh et al. 2009; Jeong and You 2011). 본 모델은 k=161.668 kN/m의 부력 스프링계수를 적용하였다. 대상 부유체의 모델링 조건은 Table 1과 Table 2에 나타내었다.
Table 1 Geometrical values of the floating concrete
Parameter
|
Value
|
Single concrete block
|
Width (m)
|
2
|
Length (m)
|
2
|
Height (m)
|
1.4
|
Thickness (m)
|
0.08
|
Total floating concrete
|
Width (m)
|
7
|
Length (m)
|
7
|
Height (m)
|
1.4
|
Freeboard (m)
|
0.3
|
Draft (m)
|
1.1
|
Weight (kg)
|
20,963
|
Density (kg/m3)
|
829.86
|
VCG (m)
|
1.241
|
Table 2 Input parameters for the structural analysis
Parameter
|
Value
|
$I_{xx}$ (kg・m2)
|
136,550
|
$I_{yy}$ (kg・m2)
|
134,400
|
$I_{zz}$ (kg・m2)
|
233,670
|
$k$ (kN/m)
|
161.668
|
여기서, $k$ : 부력의 스프링계수(kN/m)
$\rho$ : 유체의 밀도(kg/m3)
$g$ : 중력가속도(m/s2)
$V$ : 부유체의 잠긴 부피(m3)
$z$ : 부유체의 잠긴 높이(m)
$A_{w}=\dfrac{V}{z}$ (m2)
2.2 작용 외력
본 연구는 새만금 방조제 내측을 적용 대상지로 선정하였다. 이에 따라 하중 결정을 위한 설계조건은 활하중이 0.6 kN이며 풍속과 조류의 속도는 각각
45 m/s, 0.318 m/s이다. 또한 적용 대상지에 대한 유의파고는 1.5 m이며, Goda (1988)가 제안한 파압 산정식을 이용해 설계파고는 유의파고의 1.8배인 2.7 m로 결정하였다. 이때, Goda는 설계파고를 유의파고가 아닌 식 (2)와 같이 정의되는 최대파고로 정의하였다.
여기서, $H_{\max}$ : 최대파고(m)
$H_{1/250}$ : 상위 0.4% 파고의 평균(m)
이는 파고가 식 (3)으로 정의되는 Rayleigh 분포를 따른다고 가정한 것이다. 식 (3)을 이용하여 식 (4)와 식 (5)를 구할 수 있다. 이를 통해 유의파고 $H_{s}$에 대해 $H_{s}=H_{1/3}=1.416H_{rms}$이고, $H_{1/250}=1.8H_{s}$임을
알 수 있다. 다시 정리하면, $H_{\max}=$$1.8H_{s}$이므로 Goda가 제안한 최대파고 정의와 일치함을 알 수 있다(Sarpkaya et al. 1981; Lee 2011).
여기서, $H_{rms}$ : 제곱 평균 제곱근 파고
부유체에 작용하는 외력은 항만 및 어항 설계기준(MOF 2021)을 적용하여 고정하중과 활하중, 파력, 풍향력, 조류력 및 수압을 고려하였다. 또한 콘크리트구조 설계기준(KCI 2021)의 설계하중계수 및 조합을 이용하여 사용하중 및 극한하중 상태에서의 안전성 검토를 실시하였다. 총 6가지의 조합하중을 적용하였고 그중 가장 큰 하중이
적용된 Case 1과 외력 조건이 모두 고려된 Case 2에 대해 Table 3에 나타내었다.
Table 3 Combination of external forces
Case
|
Dead load factor
|
Live load
(kN)
|
Wave load
(kN)
|
Wind load
(kN)
|
Current load
(kN)
|
Hydrostatic load
(kN)
|
1
|
Non-loaded
|
1.4
|
-
|
23.79
|
-
|
0.201
|
15.56
|
Full load
|
25.09
|
0.011
|
16.41
|
2
|
Non-loaded
|
1.2
|
0.96
|
20.39
|
0.48
|
0.173
|
13.34
|
Full load
|
21.51
|
0.39
|
0.010
|
14.07
|
Case 1은 고정하중과 유체에 의해 발생하는 단면력의 조합이며 고정하중, 수압, 조류압 및 파압 모두 1.4의 하중계수를 적용하였다. Case 2는
앞서 말했듯 모든 외력 조건이 고려되었으며 고정하중과 유체에 의한 단면력에는 1.2의 하중계수를 적용하였다. 또한, 활하중과 풍하중에 의한 단면력은
각각 1.6, 0.65의 하중계수를 적용하였다. 각 Case는 무재하 시(non-loaded)와 만재하 시(full load)로 구분하여 수심이 변화될
때 조류압 및 수압의 차이를 반영하였다.
2.3 해석결과
Fig. 3은 조합하중 Case 1의 만재하 시를 적용한 해석 결과이며 콘크리트 블록은 설계압축강도 40 MPa 및 설계인장강도 3.9 MPa를 기준으로 하였다.
해석결과 최대응력은 2.29 MPa이며, 이는 콘크리트 설계압축강도와 설계인장강도에 대해 각 5.73 %, 58.72 %에 해당한다. 따라서, 작용
외력에 의한 콘크리트의 압축 및 인장 균열 발생은 방지될 것으로 사료된다.
Fig. 3 Equivalent stress of concrete
CFT 부재는 단면의 허용압축응력, 허용휨응력, 허용전단응력을 강구조 부재 설계기준(KSSC 2019)에 근거하여 식 (6)~(8)로 산정하고 각각의 최대응력과 비교하였다. Fig. 4는 CFT에 발생한 축응력을 의미한다. 길이 7 m인 CFT 부재에 발생한 최대압축응력은 4.43 MPa이며 최대휨응력은 29.80 MPa이다. 이는
허용압축응력 153.16 MPa의 약 2.89 %이고, 허용휨응력 176.25 MPa의 약 16.91 %이다. 최대전단응력은 11.78 MPa로 허용전단응력
94 MPa의 약 12.53 %로 나타났다. 마지막으로 식 (9)를 이용하여 압축력과 휨응력을 함께 받는 조합을 고려하였다. 압축과 휨 조합력의 허용값을 1.00이라고 하면 최대응력에 의한 값은 0.19로 약 19
%이다. 따라서 콘크리트 부유체의 연결 부재가 충분한 구조적 안전성을 갖는 것으로 판단된다. CFT 부재의 허용응력 및 최대응력 비교는 Table 4에 나타내었다.
Fig. 4 Axial force of concrete-filled tubes (CFTs)
Table 4 Stress results of concrete-filled tubes (CFTs)
|
Allowable stress
|
Maximum
stress
|
SF
(%)
|
Compressive stress (MPa)
|
153.16
|
4.43
|
2.89
|
Bending stress (MPa)
|
176.25
|
29.80
|
16.91
|
Shear stress (MPa)
|
94.00
|
11.78
|
12.53
|
Combined stress
|
1.00
|
0.19
|
19.00
|
여기서, $F_{c}$ : 허용압축응력(MPa)
$C_{c}$ : 한계세장비
$KL$ : 좌굴길이(mm)
$F_{ym}$ : 합성항복강도(MPa)
$r_{m}$ : 합성단면2차반경(mm)
여기서, $F_{b}$ : CFT 기둥의 허용휨응력(MPa)
$F_{y}$ : 강재의 항복강도(MPa)
여기서, $F_{s}$ : CFT 기둥의 허용전단응력(MPa)
$F_{y}$ : 강재의 항복강도(MPa)
여기서, $F_{c}$ : 허용압축응력(MPa)
$F_{b}$ : 허용휨응력(MPa)
$C_{mx},\: C_{my}$ : 모멘트 분포에 따른 보정계수
$F'_{ex},\: F'_{ey}$ : CFT 부재의 허용탄성좌굴응력(MPa)
$f_{bx},\: f_{by}$ : 휨응력(MPa)
$f_{c}$ : 압축응력(MPa)
3. 수리모형실험
3.1 대상 부유체 및 실험조건
파랑하중 조건에서 콘크리트 부유체의 정확한 구조거동 및 안전성 평가를 위해 수리모형실험을 실시하였다. 모형의 축적은 수조의 제원, 파고, 수심 및
부유체의 크기 등을 종합적으로 검토하여 축적비($\lambda$) 1:10으로 결정하였다. 수리모형실험은 중소조선연구소에서 수행되었으며 수조 크기는
28 m(W)×22 m(L)×3 m(H)이다. 수리모형 부유체는 Fig. 5에 나타내었다.
Fig. 5 Floating concrete model for the hydraulic test
본 연구 단계에서는 규칙파의 파고, 주기, 입사각에 따른 부유체의 파랑운동과 구조거동 특성을 분석하였으며 다방향 불규칙파에 관한 연구는 향후 진행할
계획이다. 실험에 적용된 파랑하중 특성은 상기 축적비를 반영하여 유의파고 0.15 m와 설계파고 0.27 m로 결정하였다. 극한 파랑하중을 모사하기
위해 파고에 대한 주기는 생성이 가능한 파형 중 가장 기울기가 가파르도록 각 1.2초, 1.5초로 설계하였고, 파랑의 입사각은 180°, 135°,
90°, 45°, 0°의 방향이다. 수리모형실험에 적용된 파랑조건은 Table 5에 나타내었다.
Table 5 Wave conditions for the hydraulic model test
Case
|
Incident angle
(°)
|
Wave height
(m)
|
Period
(s)
|
1
|
180
|
0.15
|
1.2
|
2
|
0.27
|
1.5
|
3
|
135
|
0.15
|
1.2
|
4
|
0.27
|
1.5
|
5
|
90
|
0.15
|
1.2
|
6
|
0.27
|
1.5
|
7
|
45
|
0.15
|
1.2
|
8
|
0.27
|
1.5
|
9
|
0
|
0.15
|
1.2
|
10
|
0.27
|
1.5
|
본 연구에서는 파랑 하중조건 하의 콘크리트 부유체 자체 거동을 평가하고자 계류선의 영향은 크게 고려하지 않았다. 따라서 현수선 형태의 4점계류 방식을
적용하였으며 이는 단순히 drift motion을 제어하기 위한 수단으로만 사용하였다.
본 실험의 동적동요 측정은 무선 모션트랙킹(wireless motion tracking)장비를 사용하였다. Fig. 6과 같이 1개의 센서를 이용해 6 자유도의 회전운동인 Pitch, Roll, Yaw을 측정하고 상대적 위치정보를 제공하여 Surge, Sway, Heave의
직선운동에 관한 결과를 도출한다(Cho and Bang 2007). Fig. 7은 콘크리트 부유체의 6 자유도를 나타내었다.
Fig. 6 Hydraulic model test
Fig. 7 6 degrees of freedom
3.2 실험결과
수리모형실험을 통해 부유체의 6 자유도와 월파, 전복 등을 검토하였다. 6 자유도의 결과는 평균값으로 나타내었으며 그 값은 Table 6에 정리하였다. 부유체의 거동 특성은 유의파고보다 설계파고에서 큰 움직임을 보이므로 설계파고에 대한 결과값으로 비교하고자 한다. 파랑 입사각에 따른
Surge의 거동 특성은 180°일 때 약 137.46 mm의 가장 큰 값을 나타내었으며, 90°일 때 약 13.28 mm로 가장 작은 값을 나타낸다.
반대로 Sway의 거동 특성의 경우 90°일 때 약 147.23 mm의 가장 큰 값을 나타내고, 180°일 때 약 21.33 mm로 가장 작은 값을
나타냈다. 이는 파랑의 방향과 일치하는 자유도에서 지배적인 거동을 보였으며, 파랑 방향과 수직인 자유도에서는 가장 작은 값을 보였다. Heave의
거동 특성은 90°에서 49.41 mm로 가장 크며 180°에서 31.87 mm로 가장 작다. 육안 조사를 통한 월파, 침수, 전복 등의 거동은 확인되지
않았다.
파랑 입사각에 따른 Roll 거동 특성은 파랑 입사각이 90°일 때 23.40°의 가장 큰 값을 나타내고, 180°일 때 2.55°로 가장 작은 값을
나타낸다. 반대로 Pitch 거동은 180°일 때 21.56°로 가장 크며, 90°일 때 2.77°로 가장 작다. 이는 회전운동의 특성에 따라 파랑
방향과 수직을 이루는 방향의 회전운동이 가장 크게 나타난 것이라 판단된다. Yaw 거동 특성은 모든 케이스에서 1~3.6° 내외로 비교적 작은 움직임을
보였다.
Table 6 Hydraulic model test results
6DOF (six degrees of freedom)
|
Case
|
Incident angle (°)
|
Surge (mm)
|
Sway (mm)
|
Heave (mm)
|
Roll (°)
|
Pitch (°)
|
Yaw (°)
|
1
|
180
|
137.39
|
18.91
|
17.80
|
2.12
|
20.64
|
1.07
|
2
|
137.46
|
21.33
|
31.87
|
2.55
|
21.56
|
1.21
|
3
|
135
|
85.08
|
82.19
|
21.25
|
13.20
|
13.62
|
2.09
|
4
|
101.26
|
93.57
|
32.49
|
14.29
|
15.54
|
2.52
|
5
|
90
|
7.53
|
141.79
|
38.79
|
23.85
|
1.68
|
2.88
|
6
|
13.28
|
147.23
|
49.41
|
23.40
|
2.77
|
3.60
|
7
|
45
|
48.23
|
104.12
|
23.12
|
16.49
|
9.04
|
1.08
|
8
|
56.33
|
129.10
|
35.82
|
19.97
|
9.30
|
1.39
|
9
|
0
|
122.35
|
66.14
|
21.99
|
9.00
|
20.12
|
2.08
|
10
|
125.23
|
70.91
|
34.33
|
10.40
|
19.78
|
2.17
|
4. 수리모형 부유체 ANSYS AQWA 해석
4.1 대상 부유체 및 해석 조건
ANSYS AQWA 2021 R2 해석프로그램을 사용하여 수리모형실험을 모사하였으며, 비교검토를 통해 해석 방법의 실 구조물 적용 가능성을 평가하고자
한다. 해석에 필요한 부유체의 조건은 아래 Table 7과 Table 8에 나타내었다.
본 연구에서 수행된 콘크리트 부유체의 구조거동 및 파랑거동 해석의 전체 흐름도를 Fig. 8에 나타내었다. 수리모형실험과 해석의 비교 분석을 위해 먼저 ANSYS structural 해석을 수행한다. 구조해석은 대상 부유체의 외부 및 내부의
모든 부재를 포함하여 무게중심과 관성모멘트 등 부유체의 물리적 정보를 생성한다. 다음으로 Hydrodynamic 해석은 내부 부재가 불필요하므로 앞서
생성한 모델링의 내부 부재를 제거하고 해석을 진행한다. 이때, 구조해석에서 도출된 물리적 정보를 추가하여 내부 부재의 영향을 반영해야 한다. Hydrodynamic
diffraction 해석으로 부유체에 작용하는 파압을 결과로 도출하고 구조거동 특성을 검토하였다. 다음으로 Hydrodynamic time response
해석을 수행하여 부유체의 파랑 운동을 평가하였다. Hydrodynamic time response 해석은 다양한 파랑 조건에서 부유체의 6 자유도를
결과로 도출한다(Rao 2015).
Table 7 Geometrical values of the ANSYS AQWA analytical model
Parameter
|
Value
|
Single concrete block
|
Width (m)
|
0.2
|
Length (m)
|
0.2
|
Height (m)
|
0.14
|
Thickness (m)
|
0.008
|
Total floating concrete
|
Width (m)
|
0.7
|
Length (m)
|
0.7
|
Height (m)
|
0.14
|
Freeboard (m)
|
0.03
|
Draft (m)
|
0.11
|
Weight (kg)
|
18.62
|
Density (kg/m3)
|
815.02
|
VCG (m)
|
0.105
|
Table 8 Input parameters for the ANSYS AQWA analytical model
Parameter
|
Value
|
$I_{xx}$ (kg・m2)
|
1.278
|
$I_{yy}$ (kg・m2)
|
1.275
|
$I_{zz}$ (kg・m2)
|
2.320
|
Fig. 8 Analysis flow chart
Hydrodynamic 해석을 위한 콘크리트 블록은 3D Shell 요소를 적용하였고 4개의 콘크리트 블록이 일체거동 하도록 하였다. 계류선은 수리모형실험과
동일하게 현수선 형태의 4점계류 방식이며 파랑하중 외 다른 하중은 고려하지 않았다. 수심 또한 마찬가지로 수리모형실험과 동일하게 3 m로 적용하였다.
대상 부유체의 해석 모델을 Fig. 9에 나타내었다.
Fig. 9 ANSYS AQWA analytical model
4.2 수리모형실험과 ANSYS AQWA 해석 비교
수리모형실험과 ANSYS AQWA 해석을 비교 분석하기 위한 부유체의 6 자유도 평균은 Table 9와 같다. 그래프는 유의파고 조건일 때 대칭 입사각을 제외하고 90°, 45°, 0°에 대해서만 Fig. 10과 Fig. 11에 나타내었다.
실험과 해석의 결과 Surge와 Sway 중 파랑의 입사각과 방향이 일치하여 지배적인 거동을 보이는 자유도와 부유체의 안정성에 큰 영향을 미치는 Roll,
Pitch에 대해 비교하였다. Yaw와 수직 방향의 움직임이 부유체에 미치는 영향은 미미하므로 무시하였다.
Surge와 Sway 거동 특성은 실험의 경우 파고에 따른 움직임에 큰 차이가 없었다. 그러나 해석의 경우 유의파고 0.15 m보다 설계파고 0.27
m에서 현저히 큰 움직임을 보였다. 이는 비교적 작은 부유체의 크기 및 계류선 등의 영향으로 비선형 현상이 크게 나타난 것으로 판단된다. 반면, ANSYS
AQWA 해석은 선형해석을 기반으로 하는 프로그램이므로 이와 같은 차이가 발생한 것으로 사료된다.
부유체의 안정성 평가를 위해 가장 중요한 Roll과 Pitch의 거동 특성은 실험과 해석의 결과가 높은 유사성을 나타내었다. 실험과 해석 모두 Pitch의
거동이 입사각 90°일 때 0에 가까운 움직임을 보였다. 이는 Pitch 거동에 해당하는 축을 기준으로 대칭구조이기 때문이다. 반면, Roll의 경우
입사각 0°일 때 그렇지 않은 거동 특성을 보였다. 이는 상부 태양광 패널이 한쪽으로 기울어진 비대칭 구조이기 때문이다. 따라서 구조해석에서 실시된
콘크리트 부유체의 물리적 정보가 해석에 적절히 반영되었다고 판단된다.
Fig. 10과 Fig. 11에 해당하는 Roll 거동의 실험과 해석 평균값은 13.14 %의 낮은 오차율을 보였다. 파랑 입사각에 따른 Roll 거동 특성은 유의파고 및 설계파고에서
실험 결과와 동일하게 파랑 입사각이 90°인 경우 가장 큰 값을 나타내고, 180°일 때 가장 작은 값을 나타낸다. Pitch 거동 특성도 실험과
마찬가지로 180°일 때 가장 크며, 90°일 때 가장 작다.
Table 9 ANSYS AQWA results
6DOF (six degrees of freedom)
|
Case
|
Incident angle (°)
|
Surge (mm)
|
Sway (mm)
|
Heave (mm)
|
Roll (°)
|
Pitch (°)
|
Yaw (°)
|
1
|
180
|
69.60
|
-
|
46.61
|
5.07
|
25.41
|
0.62
|
2
|
157.09
|
-
|
58.02
|
11.55
|
35.62
|
0.62
|
3
|
135
|
59.71
|
62.26
|
45.34
|
19.32
|
13.80
|
0.91
|
4
|
156.45
|
142.73
|
54.77
|
15.94
|
22.09
|
3.05
|
5
|
90
|
-
|
83.86
|
48.69
|
21.26
|
0.07
|
0.30
|
6
|
-
|
207.21
|
74.59
|
22.74
|
1.93
|
0.52
|
7
|
45
|
59.87
|
61.97
|
45.15
|
19.16
|
14.41
|
0.89
|
8
|
157.69
|
149.69
|
62.91
|
13.41
|
20.10
|
2.90
|
9
|
0
|
72.35
|
-
|
44.23
|
5.44
|
24.71
|
0.58
|
10
|
203.65
|
-
|
62.11
|
10.13
|
34.39
|
0.26
|
Fig. 10 Surge, sway, roll, and pitch motions of the hydraulic model test
Fig. 11 Surge, sway, roll, and pitch motions of ANSYS AQWA
따라서, 수리모형실험과 ANSYS AQWA 해석의 6 자유도 거동 특성 비교 분석을 통해 실험과 해석 결과값의 유사성을 확인하였다. 이를 통해 해석에
요구되는 조건들이 적절하게 반영되고, 신뢰성 있는 해석 방법을 도출한 것으로 판단된다.
5. 실 구조물 AQWA-structural 연동 해석
5.1 실 구조물 콘크리트 부유체 및 해석조건
본 절에서는 수리모형실험을 통해 검증된 해석 방법을 활용하여 구조물 콘크리트 부유체에 적용시켜 파랑하중 조건에서 정확한 구조거동을 평가하였다. 해석
절차는 Fig. 8에 나타내었다. 먼저, ANSYS structural 해석을 진행하여 Table 1과 Table 2와 같이 실 구조물 부유체의 관성모멘트 및 질량 정보를 도출하였다. 그리고 해당 물리적 정보를 입력하여 Hydrodynamic diffraction
해석과 Hydrodynamic time response 해석을 수행하고 부유체에 작용하는 파압을 분석하였다. 다음으로 ANSYS structural
해석을 이용한 파압 매핑(mapping)을 수행하여 파랑하중 조건 내 실 구조물 콘크리트 부유체의 구조해석을 실시하였다. 이때, 구조해석 모델과 Hydrodynamic
해석 모델의 질량 관성력을 일치시키는 것이 중요하다(Lee and Jeong 2011; Oh et al. 2012; Lee and You 2013).
구조물의 크기는 7 m(W)×7 m(L)×1.4 m(H) 이며, 건현과 흘수가 각 0.3 m, 1.1 m이다. 파랑조건은 유의파고 1.5 m이며,
입사각 90°, 45°, 0°에 대해 적용하였다.
5.2 파압에 따른 구조거동
실제 환경 하중에 따른 영향을 평가하기 위해 Hydrodynamic time response 해석에 대한 연동해석을 수행하였으며 입사파, 회절파,
방사파, 정수압 등의 압력이 고려되었다. 매핑된 파압은 Fig. 12와 같다.
파랑 입사각에 따라 부유체의 건현과 흘수 부분을 나누어 발생된 최대, 최소 등가응력을 Table 10에 나타내었다. 입사각 90°, 45°, 0°일 때 건현 부분에서 발생한 최대 등가응력은 각 0.5411 MPa, 0.5245 MPa, 0.5323
MPa이고 흘수 부분에서 발생한 최대 등각응력은 각 1.2044 MPa, 1.1325 MPa, 1.1991 MPa이다. 건현과 흘수 부분에서 발생한
응력은 흘수 부분에서 약 2배 크게 나타났다. 이는 흘수의 해수 아랫부분에 있는 특성으로 인해 차이가 발생된 것이라 사료된다.
건현과 흘수 부분 모두 파랑 입사각에 따라 발생한 응력은 큰 차이가 없다. 기존 연구의 경우 Lee and Jeong (2011)은 길이 400 m, 폭 100 m 규모의 부유체에 대해 파랑 입사각을 90°, 45°, 0°로 해석을 수행하였다. 연구 결과 파랑 입사각이 45°일
때 수면 아래 하부 슬래브의 인장 응력이 가장 크게 발생하여 이를 구조설계 지배인자로 분석하였다.
Kim (2011)은 길이 9.75 m, 폭 1.9 m 규모의 부유체에 대해 파랑 입사각을 0°, 30°, 60°, 90°로 해석을 실시하였다. 연구 결과 파랑 입사각이
30°와 60°일 때 상대적으로 큰 변형률이 발생하였다. 이를 통해 부유체의 길이 방향으로 최대 응력이 발생하는 파랑 입사각 조건은 30°와 60°
범위 내에 있을 것으로 판단하였다.
기존 연구에서 제안된 부유체의 형상은 길이 방향으로 긴 형태를 띄고 있으므로 특정 범위의 파랑 입사각이 작용할 때 부유체 전후에 발생하는 파력 위상차가
비교적 큰 것으로 판단된다. 그러나 본 연구에서 제안된 콘크리트 부유체의 형상은 폭:길이 비가 1:1이며, 상부 태양광 패널을 제외하고 $x$, $y$축
기준으로 모두 대칭 구조이다. 따라서, 입사각에 따라 부유체 전 후에 작용되는 파력의 위상차에 큰 차이가 없다. 그러므로 비슷한 회전 모멘트가 발생하여
유사한 등가응력이 도출되었다고 사료된다.
Fig. 12 Wave pressure mapping
Table 10 Stress distribution by wave pressure
Stress
|
Incident angle (°)
|
90
|
45
|
0
|
Top
|
Maximum
(MPa)
|
0.5411
|
0.5245
|
0.5323
|
Minimum
(MPa)
|
0.0069
|
0.0055
|
0.0067
|
Bottom
|
Maximum
(MPa)
|
1.2044
|
1.1325
|
1.1991
|
Minimum
(MPa)
|
0.0025
|
0.0021
|
0.0024
|
설계압축강도 및 설계인장강도는 앞서 콘크리트 블록의 구조적 안전성 평가와 동일하게 40 MPa, 3.9 MPa를 기준으로 하였다. 해석결과 최대응력은
파랑 입사각 90°일 때 1.2044 MPa이며, 이는 콘크리트 설계압축강도와 설계인장강도에 대해 각 3.01 %, 30.88 %에 해당한다. 즉,
파압에 의한 콘크리트의 압축 및 인장 균열 발생은 방지될 것으로 판단된다.
6. 결 론
본 연구에서는 파랑하중 조건에서 콘크리트 부유체의 구조거동 및 안전성 평가를 목적으로 수리모형실험과 해석적 분석을 실시하였다. 실험과 해석의 결과를
비교 분석하여 해석 방법의 타당성을 입증하였고, 실 구조물 콘크리트 부유체에 적용하였다. 이를 통해 파랑하중으로 발생된 파압 분포를 고려한 구조거동
평가를 실시하였다.
1) 유한요소해석을 통해 파력, 풍력, 수압 등의 작용외력 조건에서 콘크리트 블록의 균열 발생 여부 및 CFT 부재의 허용응력을 검토하였고, 충분한
구조적 안전성을 갖는 것으로 분석하였다.
2) 수리모형실험의 육안 조사 결과 월파, 침수, 전복 등은 발생하지 않았으며, 유의파고 및 설계파고에서 파랑 안전성이 확보됨을 확인하였다.
3) 파랑 입사각 및 파고에 따른 실험과 해석의 6 자유도 비교 분석을 통해 거동 특성의 유사성을 확인하였고, 적절한 해석 조건이 고려되어 신뢰성
있는 해석 방법이 도출되었다고 판단하였다.
4) 결론 3) 내용을 토대로 파랑하중에 의해 실 구조물 콘크리트 부유체에 작용하는 파압을 도출하였고, AQWA- structural 연동해석을 활용하여
이로 인해 발생되는 응력 분석을 통해 파압에 의한 구조적 안정성이 확보됨을 확인하였다.
감사의 글
본 연구는 국토교통부/국토교통과학기술진흥원(과제번호: RS-2020-KA156007)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.
References
Cho, S. H., and Bang, K. S. (2007) Motion of Buoyant Objects on Regular Waves. The
Journal of the Korea Contents Association 7(4), 170-177. (In Korean)
Choi, J. W., Joo, H. J., Nam, J. H., Hwang, S. T., and Yoon, S. J. (2013) Performance
Enhancement of Floating PV Generation Structure Using FRP. Composites Research 26(2),
105- 110. (In Korean)
Choi, J. W., Lee, G. H., Kim, J. U., Heo, N. W., Cha, Y. H., and Ha, H. (2021) Effect
of the Floating Body Shape and Other Composition on the Hydrodynamic Safety of Floating
Photo- voltaic System. Journal of the Korean Society of Visualization 19(1), 18-27.
(In Korean)
Choi, Y. K. (2014) A Study on Power Generation Analysis of Floating PV System Considering
Environmental Impact. International Journal of Software Engineering and Its Applications
8(1), 75-84.
Esedig, A. M., Osman, H. A., and Fadaee, M. (2009) Modeling of Buoyancy and Motion
of a Submerged Body. Ph.D. Thesis. Blekinge Institute of Technology.
Goda, Y. (1988) On the Methodology of Selecting Design Wave Height. 21st International
Conference on Coastal Engineering, Costa del Sol-Malaga 20-25 June 1988. Spain: American
Society of Civil Engineers. 899-913.
Huang, W., and Moan, T. (2005) Combination of Global Still- water and Wave Load Effects
for Reliability-based Design of Floating Production, Storage and Offloading (FPSO)
Vessels. Applied Ocean Research 27(3), 127-141.
Jeong, K. S., Jung, I. J., and Shin, D. K. (2020) A Study on the Development of Plastic
Floater for Solar Power Plant on a Body of Water. Journal of the Korea Academia-Industrial
Cooperation Society 21(10), 283-290. (In Korean)
Jeong, Y. J., and You, Y. J. (2011) Experimental Study for Wave-induced Hydraulic
Pressure Subjected to Bottom of Floating Structures. In 2011 IEEE-Spain OCEANS, Santander,
Spain; 6-9 June 2011. 1-6.
Jeong, Y. J., Hwang, Y. K., Kim, J. H., Song, J. J., You, Y. J., and Lee, D. H. (2011)
Development of Structural System of Hybrid Floating Structure. Goyang, Korea: Korea
Institute of Construction Technology. KICT 2011-089. (In Korean)
Jeong, Y. J., Hwang, Y. K., Yu, Y. J., Kang, J. G., Kang, S. H., Kim, D. Y., and Kim,
J. H. (2010) Development of Application Technology for Concrete Floating Structure.
Goyang, Korea: Korea Institute of Construction Technology. KICT 2010-097. (In Korean)
KCI (2021) Design Standard of Reinforced Concrete (KDS 14 20 00). Sejong, Korea: Ministry
of Land, Infrastructure and Transport (MOLIT), Korea Concrete Institute (KCI). 18
(In Korean)
Kim, H. H. and Kim, K. H. (2017) A Study on Operating Characteristics and Design Factors
of Floating Photovoltaic Generating Facilities. The Transactions of The Korean Institute
of Electrical Engineers 66(10), 1532-1539. (In Korean)
Kim, K. T. (2011) Hydroelastic Analysis of Three Dimensional Floating Structures.
MS.C. Thesis. KAIST.
Kim, S. H., Yoon, S. J., and Choi, W. C. (2017) Design and Construction of 1 MW Class
Floating PV Generation Structural System Using FRP Members. Energies 10(8), 1142.
Kim, S. H., Yoon, S. J., Choi, W. C., and Choi, K. B. (2016) Application of Floating
Photovoltaic Energy Generation Systems in South Korea. Sustainability 8(12), 1333.
KSSC (2019) Design Standard of Steel Structural Members (KDS 14 30 00). Sejong, Korea:
Ministry of Land, Infrastructure and Transport (MOLIT), Korean Society of Steel Construction
(KSSC). (In Korean)
Kumar, M., Niyaz, H. M., and Gupta, R. (2021) Challenges and Opportunities Towards
the Development of Floating Photovoltaic Systems. Solar Energy Materials and Solar
Cells 233, 111408.
Lee, C. E. (2011) Uncertainty Analysis of Wave Forces on Upright Sections of Composite
Breakwaters. Journal of Korean Society of Coastal and Ocean Engineers 23(3), 258-264.
(In Korean)
Lee, D. H., and Jeong, Y. J. (2011) Integrated Analysis of Hydrodynamic Motions and
Structural Behavior of Large-scaled Floating Structures Using AQWA-ANSYS Coupling.
Journal of the Computational Structural Engineering Institute of Korea 24(6), 601-608.
(In Korean)
Lee, D. H., and You, Y. J. (2013) Hydrodynamic Motion and Structural Performance of
Concrete Floating Structure by Length Using Numerical Analysis. Journal of the Korea
Concrete Institute 25(4), 401-409. (In Korean)
MOF (2021) Design Standard of Port and Fishing Port (KDS 64 00 00). Sejong, Korea:
Ministry of Oceans and Fisheries (MOF). (In Korean)
Oh, Y. C., Gim, O. S., and Ko, J. Y. (2012) Hydrodynamic- Structural Response Coupling
Analysis to a Rectangle Floating Structures. Journal of the Korean Society of Marine
Environment & Safety 18(6), 577-583. (In Korean)
Oliveira-Pinto, S., and Stokkermans, J. (2020) Marine Floating Solar Plants: An Overview
of Potential, Challenges and Feasibility. In Proceedings of the Institution of Civil
Engineers-Maritime Engineering 173(4), 120-135.
Park, S. Y., Kim, M. J., and Seo, Y. K. (2013) Integrity Estimation for Concrete Pontoon
of Floating Structure. Journal of Navigation and Port Research 37(5), 527-533. (In
Korean)
Rao, S. S. (2015) Dynamic Response Of Spar Platform Secured With Mooring System Using
ANSYS-AQWA. IRC. http://utpedia.utp.edu.my/id/eprint/15670/1/FYP_Dissertation.pdf
Accessed 31 October 2022.
Rim, C. W., Song, J. S., and Kim, J. D. (2011) Technical Characteristics and Development
Trends in Floating Wind Turbines. Journal of The Korean Society for Fluid Power &
Construction Equipments 8(1), 40-43. (In Korean)
Sahu, A., Yadav, N., and Sudhaker, K. (2016) Floating Photovoltaic Power Plant: A
Review. Renewable and Sustainable Energy Reviews 66, 815-824.
Sarpkaya, T., Isaacson, M., and Wehausen, J. V. (1981) Mechanics of Wave Forces on
Offshore Structures. Van Nostrand Reinhold Company Inc., 435-445.
Seo, K. C., Oh, J. M., and Park, J. S. (2018) Pontoon Type Design and Structural Safety
Estimation. Journal of the Korean Society of Marine Environment & Safety 24(5), 604-610.
(In Korean)
Thanh, N. H., Noh, H. C., Kim, S. E., and Na, S. W. (2009) Estimation of the Design
Member Forces in Very Large Concrete Floating Structure due to Wave Loads. KSCE Journal
of Civil and Environmental Engineering Research 29(6A), 641-650.