Mobile QR Code QR CODE
Export citation EndNote
1 
1.Lin, T. D., Gustaferro, A. H., and Abrams, M. S., Fire Endurance of Continuous Reinforced Concrete Beams, Portland Cement Association, Shokie, Illinois, Report No. RD072.01B, 1981.Google Search
2 
2.Lin, T. D., Ellingwood, B., and Piet, O., Flexural and Shear Behavior of Reinforced Concrete Beams during Fire Tests, Portland Cement Association, Shokie, Illinois, Report No. NBS-GCR-87-536, 1988.Google Search
3 
3.Dotreppe, J. C. and Franssen, J. M., “The Use of Numerical Models for the Fire Analysis of Reinforced Concrete and Composite Structures,” Engineering Analysis, Vol. 2, No. 2, 1985, pp. 67-74.DOI
4 
4.Lie, T. T., Lin, T. D., Allen, D. E., and Abrams, M. S., Fire Resistance of Reinforced Concrete Columns, NRCC 23065 (DBR Paper No. 1167), National Research Council of Canada (Division of Building Research), Ottawa, 1984.Google Search
5 
5.Anderberg, Y. and Thelandersson, S., Stress and Defor-mation Characteristics of Concrete, 2-Experimental Investigation and Material Behavior Model, Bulletin No. 54, University of Lund, Sweden, 1976.Google Search
6 
6.Harmathy, T. Z., A Comprehensive Creep Model, NRCC 9696, National Research Council of Canada (Division of Building Research), Ottawa, 1967.Google Search
7 
7.Youssef, M. A. and Moftah, M., “General Stress-Strain Relationship for Concrete at Elevated Temperatures,” Engi-neering Structures, Vol. 29, No. 10, 2007, pp. 2618-2634.DOI
8 
8.Li, L. and Purkiss, J. A., “Stress-Strain Constitutive Equations of Concrete Material at Elevated Temperatures,” Fire Safety Journal, Vol. 40, No. 7, 2005, pp. 669-686.DOI
9 
9.Sidibé, K., Duprat, F., Pinglot, M., and Bourret, B., “Fire Safety of Reinforced Concrete Columns,” ACI Structural Journal, Vol. 97, No. 4, 2000, pp. 642-647.Google Search
10 
10.Cai, J., Burgess, I., and Prank, R., “A generalized Steel/Reinforced Concrete Beam-Column Element Model for Fire Conditions,” Engineering Structures, Vol. 25, No. 6, 2003, pp. 817-833.DOI
11 
11.Capua, D. D. and Mari, A. R., “Nonlinear Analysis of Reinforced Concrete Cross-Sections Exposed to Fire,” Fire Safety Journal, Vol. 42, No. 2, 2007, pp. 139-149.DOI
12 
12.Sadaoui, A. and Khennane, A., “Effect of Transient Creep on the Behaviour of Reinforced Concrete Columns in Fire,” Engineering Structures, Vol. 31, No. 9, 2009, pp. 2203-2208.DOI
13 
13.Terro, M. J., “Numerical Modeling of the Behavior of Concrete Structures in Fire,” ACI Structural Journal, Vol. 95, No. 2, 1998, pp. 183-193.Google Search
14 
14.Huang, Z., Burgess, I. W., and Plank, R. J., “3D Modelling of Beam-Columns with General Cross-Sections in Fire,” Proceedings of the Third International Workshop on Structures in Fire, Ottawa, Canada, 2004.Google Search
15 
15.Huang, Z., Burgess, I. W., and Plank, R. J., “Three- Dimensional Analysis of Reinforced Concrete Beam-Column Structures in Fire,” Journal of Structural Engineering, Vol. 135, No. 10, 2009, pp. 1201-1212.DOI
16 
16.Huang, Z. and Platten, A., “Nonlinear Finite Element Analysis of Planar Reinforced Concrete Members Subjected to Fires,” ACI Structural Journal, Vol. 94, No. 3, 1997, pp. 272-281.Google Search
17 
17.Bratina, S., Saje, M., and Planinc, I., “On Materially and Geometrically Non-Linear Analysis of Reinforced Concrete Planar Frames,” International Journal of Solids and Structures, Vol. 41, No. 24-25, 2004, pp. 7181-7207.DOI
18 
18.Bratina, S., Čas, B., Saje, M., and Planinc, I., “Numerical Modelling of Behaviour of Reinforced Concrete Columns in Fire and Comparison with Eurocode 2,” International Journal of Solids and Structures, Vol. 42, No. 21-22,  2005, pp. 5715-5733.DOI
19 
19.Bratina, S., Saje, M., and Planinc, I., “The Effect of Different Strain Contributions on the Response of RC Beams in Fire,” Engineering Structures, Vol. 29, No. 3, 2007, pp. 418-430.DOI
20 
20.Kodur, V. K. R. and Dwaikat, M., “A Numerical Model for Predicting the Fire Resistance of Reinforced Concrete Beams,” Cement and Concrete Composites, Vol. 30, No. 5, 2008, pp. 431-443.DOI
21 
21.Kodur, V., Dwaikat, M., and Fike, R., “High-Temperature Properties of Steel for Fire Resistance Modeling of Structures,” Journal of Materials in Civil Engineering, Vol. 22, No. 5, 2010, pp. 423-434.DOI
22 
22.Kodur, V. and Raut, N., “A Simplified Approach for Predicting Fire Resistance of Reinforced Concrete Columns under Biaxial Bending,” Engineering Structures, Vol. 41, 2012, pp. 428-443.DOI
23 
23.Lie, T. T., Structural Fire Protection, American Society of Civil Engineers, New York, 1992.Google Search
24 
24.Eurocode 2, Design of Concrete Structures. Part 1–2: General Rules-Structural Fire Design, EN 1992-1-2, Commission of European Communities, Brussels, 2004.Google Search
25 
25.Harmathy, T. Z., Fire Safety Design and Concrete, Longman Scientific and Technical, Harlow, UK, 1993.Google Search
26 
26.Cruz, C. R., Apparatus for Measuring Creep of Concrete at High Temperatures, Portland Cement Association, Shokie, Illinois, Report No. 225, 1968, pp.36-42.Google Search
27 
27.Nielsen, C. V., Pearce, C. J., and Bićanić, N., “Theoretical Model of High Temperature Effects on Uniaxial Concrete Member under Elastic Restraint,” Magazine of Concrete Research, Vol. 54, No. 4, 2002, pp. 239-249.DOI
28 
28.Lie, T. T. and Lin, T. D., “Fire Performance of Reinforced Concrete Columns,” Fire Safety: Science and Engineering, American Society for Testing and Materials, Denver, 1985, pp. 176-205.DOI
29 
29.Hertz, K. D., “Concrete Strength for Fire Safety Design,” Magazine of Concrete Research, Vol. 57, No. 8, 2005, pp. 445-453.DOI
30 
30.Khennane, A. and Baker, G., “Uniaxial Model for Concrete under Variable Temperature and Stress,” Journal of Engineering Mechanics, Vol. 119, No. 8, 1993, pp. 1507-1525.DOI
31 
31.Anderberg, Y., “Modelling Steel Behavior,” Fire Safety Journal, Vol. 13, No. 1, 1988, pp. 17-26.DOI
32 
32.Khoury, G. A., “Effect of Fire on Concrete and Concrete Structures,” Progress in Structural Engineering and Materials, Vol. 2, No. 4, 2000, pp. 429-447.DOI
33 
33.Dorn, J. E., “Some Fundamental Experiments on High Temperature Creep,” Journal of the Mechanics and Physics of Solids, Vol. 3, No. 2, 1955, pp. 85-88.DOI
34 
34.Harmathy, T. Z., Deflection and Failure of Steel-Supported Floors and Beams in Fire, NRCC 9933, National Research Council of Canada (Division of Building Research), Ottawa, 1967.Google Search
35 
35.ASCE, Structural Fire Protection, Manual No. 78, ASCE Committee on Fire Protection, Reston, 1992.Google Search
36 
36.Poh, K. W., “Stress-Strain-Temperature Relationship for Structural Steel,” Journal of Materials in Civil Engineering, Vol. 13, No. 5, 2001, pp. 371-379.DOI
37 
37.Buchanan, A. H., Structural Design for Fire Safety, Wiley, New York, 2001.Google Search
38 
38.ASTM, Standard Methods of Fire Tests of Building Construction and Materials, Designation E 119, American Society for Testing and Materials, Philadelphia, 1976.Google Search
39 
39.Kwak, H. G., Kwon, S. H., and Ha, S. H., “Temperature Distribution and It’s Contribution to Self-Equilibrium Thermal Stress in Bridge,” Journal of the Computational Structural Engineering Institute of Korea, Vol. 24, No. 5, 2011, pp. 531-542.Google Search
40 
40.Kwak, H. G. and Kwak J. H., “An Improved Design Formula for a Biaxially Loaded Slender RC Column,” Engineering Structures, Vol. 32, No. 1, 2010, pp. 226-237.DOI
41 
41.Kwak, H. G. and Kim, J. K., “Analytical Model for Long-Term Behavior of Slender RC Columns,” Journal of the Korean Society of Civil Engineering, Vol. 22, No. 2A, 2002, pp. 365-377.Google Search