JKCI
Journal of
the Korea Concrete Institute
KCI
Contact
Open Access
Bi-monthly
ISSN : 1229-5515 (Print)
ISSN : 2234-2842 (Online)
http://www.jkci.or.kr/jkci
Mobile QR Code
Journal of the Korea Concrete Institute
ISO Journal Title
J Korea Concr Inst.
SCOPUS
KCI Accredited Journal
Main Menu
Main Menu
저널소개
About Journal
최근호
Current Issue
논문집
All Issues
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
논문투고안내
Instructions to Authors
출판정책
Publishing Policies
연락처
Contact Info
논문투고
Online-Submission
Journal Search
Home
All Issues
2013-10
(Vol.25 No.5)
10.4334/JKCI.2013.25.5.497
Journal XML
Export citation
EndNote
XML
PDF
INFO
REF
1
1.Lin, T. D., Gustaferro, A. H., and Abrams, M. S., Fire Endurance of Continuous Reinforced Concrete Beams, Portland Cement Association, Shokie, Illinois, Report No. RD072.01B, 1981.
2
2.Lin, T. D., Ellingwood, B., and Piet, O., Flexural and Shear Behavior of Reinforced Concrete Beams during Fire Tests, Portland Cement Association, Shokie, Illinois, Report No. NBS-GCR-87-536, 1988.
3
3.Dotreppe, J. C. and Franssen, J. M., “The Use of Numerical Models for the Fire Analysis of Reinforced Concrete and Composite Structures,” Engineering Analysis, Vol. 2, No. 2, 1985, pp. 67-74.
4
4.Lie, T. T., Lin, T. D., Allen, D. E., and Abrams, M. S., Fire Resistance of Reinforced Concrete Columns, NRCC 23065 (DBR Paper No. 1167), National Research Council of Canada (Division of Building Research), Ottawa, 1984.
5
5.Anderberg, Y. and Thelandersson, S., Stress and Defor-mation Characteristics of Concrete, 2-Experimental Investigation and Material Behavior Model, Bulletin No. 54, University of Lund, Sweden, 1976.
6
6.Harmathy, T. Z., A Comprehensive Creep Model, NRCC 9696, National Research Council of Canada (Division of Building Research), Ottawa, 1967.
7
7.Youssef, M. A. and Moftah, M., “General Stress-Strain Relationship for Concrete at Elevated Temperatures,” Engi-neering Structures, Vol. 29, No. 10, 2007, pp. 2618-2634.
8
8.Li, L. and Purkiss, J. A., “Stress-Strain Constitutive Equations of Concrete Material at Elevated Temperatures,” Fire Safety Journal, Vol. 40, No. 7, 2005, pp. 669-686.
9
9.Sidibé, K., Duprat, F., Pinglot, M., and Bourret, B., “Fire Safety of Reinforced Concrete Columns,” ACI Structural Journal, Vol. 97, No. 4, 2000, pp. 642-647.
10
10.Cai, J., Burgess, I., and Prank, R., “A generalized Steel/Reinforced Concrete Beam-Column Element Model for Fire Conditions,” Engineering Structures, Vol. 25, No. 6, 2003, pp. 817-833.
11
11.Capua, D. D. and Mari, A. R., “Nonlinear Analysis of Reinforced Concrete Cross-Sections Exposed to Fire,” Fire Safety Journal, Vol. 42, No. 2, 2007, pp. 139-149.
12
12.Sadaoui, A. and Khennane, A., “Effect of Transient Creep on the Behaviour of Reinforced Concrete Columns in Fire,” Engineering Structures, Vol. 31, No. 9, 2009, pp. 2203-2208.
13
13.Terro, M. J., “Numerical Modeling of the Behavior of Concrete Structures in Fire,” ACI Structural Journal, Vol. 95, No. 2, 1998, pp. 183-193.
14
14.Huang, Z., Burgess, I. W., and Plank, R. J., “3D Modelling of Beam-Columns with General Cross-Sections in Fire,” Proceedings of the Third International Workshop on Structures in Fire, Ottawa, Canada, 2004.
15
15.Huang, Z., Burgess, I. W., and Plank, R. J., “Three- Dimensional Analysis of Reinforced Concrete Beam-Column Structures in Fire,” Journal of Structural Engineering, Vol. 135, No. 10, 2009, pp. 1201-1212.
16
16.Huang, Z. and Platten, A., “Nonlinear Finite Element Analysis of Planar Reinforced Concrete Members Subjected to Fires,” ACI Structural Journal, Vol. 94, No. 3, 1997, pp. 272-281.
17
17.Bratina, S., Saje, M., and Planinc, I., “On Materially and Geometrically Non-Linear Analysis of Reinforced Concrete Planar Frames,” International Journal of Solids and Structures, Vol. 41, No. 24-25, 2004, pp. 7181-7207.
18
18.Bratina, S., Čas, B., Saje, M., and Planinc, I., “Numerical Modelling of Behaviour of Reinforced Concrete Columns in Fire and Comparison with Eurocode 2,” International Journal of Solids and Structures, Vol. 42, No. 21-22, 2005, pp. 5715-5733.
19
19.Bratina, S., Saje, M., and Planinc, I., “The Effect of Different Strain Contributions on the Response of RC Beams in Fire,” Engineering Structures, Vol. 29, No. 3, 2007, pp. 418-430.
20
20.Kodur, V. K. R. and Dwaikat, M., “A Numerical Model for Predicting the Fire Resistance of Reinforced Concrete Beams,” Cement and Concrete Composites, Vol. 30, No. 5, 2008, pp. 431-443.
21
21.Kodur, V., Dwaikat, M., and Fike, R., “High-Temperature Properties of Steel for Fire Resistance Modeling of Structures,” Journal of Materials in Civil Engineering, Vol. 22, No. 5, 2010, pp. 423-434.
22
22.Kodur, V. and Raut, N., “A Simplified Approach for Predicting Fire Resistance of Reinforced Concrete Columns under Biaxial Bending,” Engineering Structures, Vol. 41, 2012, pp. 428-443.
23
23.Lie, T. T., Structural Fire Protection, American Society of Civil Engineers, New York, 1992.
24
24.Eurocode 2, Design of Concrete Structures. Part 1–2: General Rules-Structural Fire Design, EN 1992-1-2, Commission of European Communities, Brussels, 2004.
25
25.Harmathy, T. Z., Fire Safety Design and Concrete, Longman Scientific and Technical, Harlow, UK, 1993.
26
26.Cruz, C. R., Apparatus for Measuring Creep of Concrete at High Temperatures, Portland Cement Association, Shokie, Illinois, Report No. 225, 1968, pp.36-42.
27
27.Nielsen, C. V., Pearce, C. J., and Bićanić, N., “Theoretical Model of High Temperature Effects on Uniaxial Concrete Member under Elastic Restraint,” Magazine of Concrete Research, Vol. 54, No. 4, 2002, pp. 239-249.
28
28.Lie, T. T. and Lin, T. D., “Fire Performance of Reinforced Concrete Columns,” Fire Safety: Science and Engineering, American Society for Testing and Materials, Denver, 1985, pp. 176-205.
29
29.Hertz, K. D., “Concrete Strength for Fire Safety Design,” Magazine of Concrete Research, Vol. 57, No. 8, 2005, pp. 445-453.
30
30.Khennane, A. and Baker, G., “Uniaxial Model for Concrete under Variable Temperature and Stress,” Journal of Engineering Mechanics, Vol. 119, No. 8, 1993, pp. 1507-1525.
31
31.Anderberg, Y., “Modelling Steel Behavior,” Fire Safety Journal, Vol. 13, No. 1, 1988, pp. 17-26.
32
32.Khoury, G. A., “Effect of Fire on Concrete and Concrete Structures,” Progress in Structural Engineering and Materials, Vol. 2, No. 4, 2000, pp. 429-447.
33
33.Dorn, J. E., “Some Fundamental Experiments on High Temperature Creep,” Journal of the Mechanics and Physics of Solids, Vol. 3, No. 2, 1955, pp. 85-88.
34
34.Harmathy, T. Z., Deflection and Failure of Steel-Supported Floors and Beams in Fire, NRCC 9933, National Research Council of Canada (Division of Building Research), Ottawa, 1967.
35
35.ASCE, Structural Fire Protection, Manual No. 78, ASCE Committee on Fire Protection, Reston, 1992.
36
36.Poh, K. W., “Stress-Strain-Temperature Relationship for Structural Steel,” Journal of Materials in Civil Engineering, Vol. 13, No. 5, 2001, pp. 371-379.
37
37.Buchanan, A. H., Structural Design for Fire Safety, Wiley, New York, 2001.
38
38.ASTM, Standard Methods of Fire Tests of Building Construction and Materials, Designation E 119, American Society for Testing and Materials, Philadelphia, 1976.
39
39.Kwak, H. G., Kwon, S. H., and Ha, S. H., “Temperature Distribution and It’s Contribution to Self-Equilibrium Thermal Stress in Bridge,” Journal of the Computational Structural Engineering Institute of Korea, Vol. 24, No. 5, 2011, pp. 531-542.
40
40.Kwak, H. G. and Kwak J. H., “An Improved Design Formula for a Biaxially Loaded Slender RC Column,” Engineering Structures, Vol. 32, No. 1, 2010, pp. 226-237.
41
41.Kwak, H. G. and Kim, J. K., “Analytical Model for Long-Term Behavior of Slender RC Columns,” Journal of the Korean Society of Civil Engineering, Vol. 22, No. 2A, 2002, pp. 365-377.