Mobile QR Code QR CODE
Export citation EndNote
1 
1.Broomfield, J. P., Corrosion of Steel in Concrete: Under-standing, Investigation and Repair, London: E&FN, 1997, pp. 1-15.Google Search
2 
2.Song, H. W., Kim, H. J., Kwon, S. J., Lee, C. H., Byun, K. J., and Park, C. K., “Prediction of Service Life in Cracked Reinforced Concrete Structures Subjected to Chloride Attack and Carbonation,” 6th International Congress on Global Construction: Ultimate Concrete Oppor-tunities, Dundee, Scotland, Cement Combinations for Durable Concrete, 2005, pp. 767-776.Google Search
3 
3.Park, S. S., Kwon, S. J., and Song, H. W., “Analysis Technique for Restrained Shrinkage of Concrete Containing Chlorides,” Materials and Structures, Vol. 44, No. 2, 2011, pp. 475-486. (doi: http://dx.doi.org/10.1617/s11527-010-9642-4)Google Search
4 
4.Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K., “Pre-dicting Carbonation in Early-Aged Cracked Concrete,” Cement and Concrete Research, Vol. 36, No. 5, 2006, pp. 979-989.DOI
5 
5.Kwon, S. J. and Na, U. J., “Prediction of Durability for RC Columns with Crack and Joint under Carbonation Based on Probabilistic Approach,” International Journal of Concrete Structures and Materials, Vol. 5, No. 1, 2011, pp. 11-18. (doi: http://dx.doi.org/10.4334/IJCSM.2011. 5.1.011).Google Search
6 
6.Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H., “Service Life Prediction of Concrete Wharves with Early- Aged Crack: Probabilistic Approach for Chloride Diffusion,” Structural Safety, Vol. 31, No. 1, 2009, pp. 75-83.DOI
7 
7.Park, S. S., Kwon, S. J., and Jung, S. H, “Analysis Technique for Chloride Penetration in Cracked Concrete Using Equivalent Diffusion and Permeation,” Construction and Building Materials, Vol. 29, No. 2, 2012, pp. 183-192.DOI
8 
8.Park, S. S., Kwon, S. J., Jung, S. H., and Lee, S. W., “Modeling of Water Permeability in Early Aged Concrete with Cracks Based on Micro Pore Structure,” Construction and Building Materials, Vol. 27, No. 1, 2012, pp. 597-604.DOI
9 
9.Aldea, C. M., Ghandehari, M., Shah, S. P., and Karr, A., “Estimation of Water Flow Through Cracked Concrete Under Load,” ACI Materials Journal, Vol. 97, No. 5, 2000, pp. 567-575.Google Search
10 
10.Alonso, C., Andrade, C., and González, J. A., “Relation between Resistivity and Corrosion Rate of Reinforce-ments in Carbonated Mortar Made with Several Cement Types,” Cement and Concrete Research, Vol. 18, No. 5, 1988, pp. 687-698.DOI
11 
11.Lim, Y. C., “A Study on the Estimation of Moisture Condition of Concrete by Resistivity Method,” Journal of Korea Architecture Institute, Vol. 28, No. 12, 2012, pp. 69-76 (in Korean).Google Search
12 
12.So, H. S., “Environmental Influences and Assessment of Corrosion Rate of Reinforcing Bars Using the Linear Polari-zation Resistance Technique,” Journal of Korea Architecture Institute, Vol. 22, No. 2, 2006, pp. 107-114 (in Korean).Google Search
13 
13.Liu, T. and Weyers, R. W., “Modeling the Dynamic Corrosion Process in Chloride Contaminated Concrete Structures,” Cement and Concrete Research, Vol. 28, No. 3, 1998, pp. 365-379.DOI
14 
14.Elsener, B., “Corrosion Rate of Steel in Concrete- Measure-ments beyond the Tafel Law,” Corrosion Science, Vol. 47, No. 12, 2005, pp. 3019-3033.DOI
15 
15.Baek, S. H., Xue, William, Feng, M. Q., and Kwon, S. J., “Nondestructive Corrosion Detection in RC through Integrated Heat Induction and IR Thermography,” Journal of Non Destructive Evaluation, Vol. 31, No. 2, 2012, pp. 181-190. (doi: http://dx.doi.org/10.1007/s10921-012-0133-0)Google Search
16 
16.Kwon, S. J. and Park, S. S., “Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography,” Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 16, No. 2, 2012, pp. 40-48 (in Korean).DOI
17 
17.Maierhofer, C. H., Arndt, R., Rllig, M., Rieck, C., Walther, A., Scheel, H., and Hillemeier, B., “Application of Impulse-Thermography for Nondestructive Assessment of Concrete Structures,” Cement and Concrete Composites, Vol. 28, No. 4, 2006, pp. 393-401.DOI
18 
18.Song, H. W., Lee, C. H., and Lee, K. C., “A Study on Corrosion Potential of Cracked Concrete Beam according to Corrosion Resistance Assessment,” Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 97, No. 1, 2009, pp. 97-105 (in Korean).Google Search
19 
19.Elsener, B., Andrade, C., Gulikers, J., Polder, R., and Raupach, M., “Hall-Cell Potential Measurements-Potential Mapping on Reinforced Concrete Structures,” Materials and Structures, Vol. 36, No. 7, 2003, pp. 461-471. (doi: http://dx.doi.org/10.1007/BF02481526)Google Search
20 
20.ASTM C876-09, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, 2009, pp. 1-6.Google Search
21 
21.Kim, K. B., A Study on Allowable Crack Width of Reinforced Concrete Flexural Beam Subjected to Corrosive Environment, Yonsei University, Dissertation of MS, 2001, pp. 35 (in Korean).Google Search
22 
22.Lee, H. S. and Kwon, S. J., “An Experimental Study on Carbonation Velocity in Cracked Concrete,” Journal of Chungwoon University Construction and Environmental Research Institute, Vol. 7, No. 1, pp. 1-11.Google Search
23 
23.Leelalerkiet, V., Kyung J. W., Ohtsu, M., Yokota, M., and Yokota., M., “Analysis of Half-Cell Potential Measure-ment for Corrosion of Reinforced Concrete,” Construction and Building Materials, Vol. 18, No. 3, pp. 155-162.DOI
24 
24.Thomas, M. D. A. and Bentz, E. C., Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 2002, pp. 12-56.Google Search
25 
25.Korea Concrete Institute, Concrete Standard Specification- Durability Part, 2004, pp. 25-86 (in Korean).Google Search
26 
Google Search
27 
Google Search