Mobile QR Code QR CODE
Export citation EndNote
1 
1.Kim, K. S., Lee, D. H., Park, M. K., and Im, J. H., Development of Enhancement Techniques on Shear Strength of Hollow-core Slab and its Composite Action with Topping Concrete, SAMSUNG C&T Technical Report, 2012, pp. 212.Google Search
2 
2.Becker, R.J. and Buettner, D.R., “Shear Tests of Extruded Hollow Core Slabs”, PCI Journal, Vol. 30, No. 2, 1985, pp. 40-54.DOI
3 
3.Hawkins, N.M. and Ghosh, S.K., “Shear Strength of Hollow- Core Slabs”, PCI Journal, Vol. 51, No. 1, 2006, pp. 110-114.Google Search
4 
4.Im, J.H., Park, M.K., Lee, D.H., Kim, K.S., Seo, S.Y., and Jang, S.Y., “Effect of Effective Prestress on Shear Capacity of Hollow-Core Slab Units”, Advanced Science Letter, Accepted for Publication, 2012.Google Search
5 
5.Mones, R.M. and Brena, S.F., “Hollow-Core Slabs with Cast-In-Place Concrete Toppings: A Study of Interfacial Shear Strength”, PCI Journal, Vol. 58, No. 3, 2013, pp. 124-141.DOI
6 
6.Pajari, M., “Web Shear Failure in Pprestressed Hollow Core Slabs”, Journal of Structural Engineering, Vol. 42, No. 4, 2009, pp. 83-104.Google Search
7 
7.Palmer, K.D. and Schultz, A.E., “Factors Affecting Web-shear Capacity of Deep Hollow-Core Units”, PCI Journal, Vol. 55, No. 2, 2010, pp. 123-146.DOI
8 
8.Palmer, K.D. and Schultz, A.E., “Experimental Investigation of the Web-shear Strength of Deep Hollow-Core Units”, PCI Journal, Vol. 56, No. 3, 2011, pp. 83-104.DOI
9 
9.Korea Concrete Institute, Concrete Design Code, Kimoondang Publishing Company, 2012, pp. 342.Google Search
10 
10.AASHTO LRFD, AASHTO LRFD Bridge Design Specifications, 4th ed., American Association of State Highway and Trans-portation Officials, Washington, D.C., 2007.Google Search
11 
11.ACI Committee 318, Building Code Requirements for Reinforced Concrete and Commentary (ACI 318M-11), American Concrete Institute, Detroit, 2011, pp. 503.Google Search
12 
12.British Standard Institute, Structural Use of Concrete - Part 1 Code of Practice for Design and Construction, BS 8110-1: 1997, London, 1997, pp. 163.Google Search
13 
13.European Committee for Standardization (CEN), Eurocode 2: Design of Concrete Structure. Part 1-1: General Rules and Rules for Buildings, EN 1992-1-1:2004, Brussels, 2004, pp. 225.Google Search
14 
14.PCI Industry Hand Book Committee, PCI Design Handbook, 7th ed., Precast/Prestressed Concrete Institute, 2010.Google Search
15 
15.Anderson, A.R., “Composite Designs in Precast and Cast-in-Place Concrete”, Progressive Architecture, Vol. 41, No. 9, 1960, pp. 172-179.Google Search
16 
16.Hanson, N.W., “Precast-Prestressed Concrete Bridges 2. Horizontal Shear Connections”, Journal of the PCA Research and Development Laboratories, Vol. 2, No. 2, 1960, pp. 38-58.Google Search
17 
17.Mattock, A.H. and Kaar, P.H., “Precast-Prestressed Concrete Bridges, 4 - Shear Tests of Continuous Girders”, Journal of the PCA Research and Development Laboratories, Portland Cement Association, Vol. 3, No. 1, 1961, pp. 47-56.Google Search
18 
18.Lee, S. S., Hong, S. Y., Park, K. S., and Bae, K. W., “Evaluation of Horizontal Shear Strength for Cotter Type Surface Roughness of Hollow Core Slab”, Journal of the architectural institute of Korea Structure & Construction, Vol. 28, No. 8, 2012, pp. 61-68.Google Search
19 
19.Aziz, R.J., “Shear Capacity of Concrete Prisms with Interface Joints”, Journal of Engineering, Vol. 16, No. 2, 2010, pp. 5084-5097.Google Search
20 
20.Gohnert, M., “Horizontal Shear Transfer Across a Roughened Surface”, Cement & Concrete Composites, Vol. 25, No. 3, 2003, pp. 379-385.DOI
21 
21.Wallenfelsz, J.A., “Horizontal Shear Transfer for Full-Depth Precast Concrete Bridge Deck Panels”, Master Thesis, Virginia Polytechnic Institute and State University, 2006, pp. 111.Google Search
22 
22.Djazmati, B. and Pincheira, J.A., “Shear Stiffness and Strength of Horizontal Construction Joints”, ACI Structural Journal, Vol. 101, No. 4, 2004, pp. 484-493.Google Search