Mobile QR Code QR CODE
Export citation EndNote
1 
Bakhareva, T., Sanjayana, J. G., and Cheng, Y. B. (2001) Resistance of Alkali-activated Slag Concrete to Carbonation. Cement and Concrete Research 31(9), 1277-1283.DOI
2 
Bentz, D. P. and Ferraris, C. F. (2010) Rheology and Setting of High Volume Fly Ash Mixtures. Cement & Concrete Composites 32, 265-270.DOI
3 
Brooks, J. J. and AI-Kaisi, A. F. (1990) Early Strength Develop-ment of Portland and Slag Cement Concretes Cured at Elevated Temperatures. ACI Materials Journal 87(5), 503-507.Google Search
4 
Dehuai, W. and Zhaoyuan, C. (1997) On Predicting Compressive Strengths of Mortars with Ternary Blends of Cement, ggbfs and fly ash. Cement and Concrete Research 27(4), 487-493.DOI
5 
Durán-Herrera, A., Juárez, C. A., Valdez, P., and Bentz, D. P. (2011) Evaluation of Sustainable High-volume Fly Ash Concretes. Cement & Concrete Composites 33, 39-45.DOI
6 
Ferraris, C. F., Obla, K. H., and Hill, R. (2001) The Influence of Mineral Admixtures on the Rheology of Cement Paste and Concrete. Cement and Concrete Research 31(2), 245-255.DOI
7 
Hester, D., McNally, C., and Richardson, M. A (2005) Study of the Influence of Slag Alkali Level on the Alkali-silica Reactivity of Slag Concrete. Construction and Building Materials 19, 661-665.DOI
8 
Japan Cement Association. (1993) Easy to Understand for Cement Science, JAPAN: Japan Cement Association.Google Search
9 
Jeon, B. and Maruyama, I. (2015a) Early Age Hydration Behavior of Cement Paste with Blast Furnace Slag and Lime-based Expansive Admixture. Journal of Structural and Construction Engineering (Transactions of AIJ) 80(712), 841-850.DOI
10 
Jeon, B. and Maruyama, I. (2015b) Early Age Volume Changing of Mortar with Blast Furnace Slag Cement and Lime-based Expansive Admixture. Journal of Structural and Construction Engineering (Transactions of AIJ) 80(715), 1357-1366.DOI
11 
Jeong, Y., Park, H. Jun, Y., Jeong, J., and Oh, J. (2015) Microstructural Verification of the Strength Performance of Ternary Blended Cement Systems with high Volumes of Fly Ash and GGBFS. Construction and Building Materials 95, 96-107.DOI
12 
Jeong, Y., Park, H., Jun, Y., Jeong, J., and Oh, J. (2015) Microstructural Verification on Ternary Blend Cement System. Korea Concrete Institute 2015 Spring Conference 95, 463-464.Google Search
13 
Korea Concrete Institute (2011) New Concrete Engineering, Revised Edition, KOREA: Korea Concrete InstituteGoogle Search
14 
Korea Concrete Institute (2012) Standard of Concrete Structure, Revised Edition, KOREA: Korea Concrete Institute.Google Search
15 
Kuder, K., Lehman, D., Berman, J., Hannesson, G., and Shogren, R. (2012) Mechanical Properties of Self Consolidating Concrete Blended with High Volumes of Fly Ash and Slag. Construction and Building Materials 34, 285-295.DOI
16 
Lim, S. N. and Wee, T. H. (2000) Autogenous Shrinkage of Ground-Granulated Blast-Furnace Slag Concrete. ACI Ma-terials Journal 97(5), 587-593.Google Search
17 
Liua, J., Qiub, Q., Chena, X., Wanga, Xinga, F., Hana, N., and He, Y. (2016) Degradation of Fly Ash Concrete Under the Coupled Effect of Carbonation and Chloride Aerosol Ingress 112, 364-372.Google Search
18 
Ministry of Environment (2014) Road Map for the Achievement of National INDC, KOREA: Ministry of environment.Google Search
19 
Ravina, D. and Mehta, P. K. (1986) Properties of Fresh Concrete Containing Large Amounts of Fly Ash. Cement and Concrete Research 16, 227-238.DOI
20 
Richardson, I. G. (2004) Tobermorite/jennite- and Tobermorite/ Calcium Hydroxide-based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, h-dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-furnace Slag, Metakaolin, or Silica Fume. Cement and Concrete Research 34(9), 1733-1777.DOI
21 
Ryu, D., Kim, W., Yang, W., and Park, D. (2012) An Experimental Study on the Carbonation and Drying Shrinkage of Concrete Using High Volumes of Ground Granulated Blast-furnace Slag. Journal of the Korea Institute of Building Construction 12(4), 393-400.DOI