Mobile QR Code QR CODE
Export citation EndNote
1 
ACI Committee 318 (2014) Building Code Requirement for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). USA, MI: American Concrete Institute. 1-519.Google Search
2 
Aldejohann, M. and Schnellenbach-Held, M. (2003) Investiga-tions on the Shear Capacity of Biaxial Hollow Slabs-Test Results and Evaluation. Darmstadt Concrete, 18, 1-11.Google Search
3 
Aldejohann, M. and Schnellenbach-Held, M. (2005) Biaxial hollow slabs, theory and tests. Betonwerk Fertigteil-Technik 71(10), 50-59.Google Search
4 
Chung, J. H. (2015) Flexural and Shear Behavior of Donut Type Voided Slabs. Ph.D. Thesis. Hanyang University.Google Search
5 
Chung, J. H., Choi, K. H., Lee, S. C., and Choi, C. S., K. H. (2011) An Analytical Study on the Optimal Hollow Sphere Shapes in a Biaxial Hollow Slab. Journal of the Korea Architectural Institute 27(8), 3-10. (In Korean)Google Search
6 
Chung, J. H., Lee, S. C., Choi, C. S., and Choi, K. H. (2012) One-Way Shear Strength of Donut Type Biaxial Hollow Slab Considered Hollow Shapes and Materials. Journal of the Korea Concrete Institute 24(4), 391-398. (In Korean)Google Search
7 
Comite Euro-international Du Beton (1993) CEB-FIP Model Code 1990. Thomas Telford.Google Search
8 
Jung, M. G. and Choi, C. S. (2017) An Experimental Study on the Flexural Capacity of a On-way Void Slab with Remo-vable Deck Plate. Journal of the Korea Concrete Institute 29(5), 437-445. (In Korean)Google Search
9 
Kang, J. Y., Kim, H. G., Joo, E. H., Kim, S. M., Kim, H. S., and Shin, Y. S. (2011) Experimental Studies on the Construction Me-thods. Korea Architectural Institute Spring, 15-16. (In Korean)Google Search
10 
Kani, G. N. J. (1964) The Riddle of Shear Failure and Its Solution. ACI Structural Journal 61(28), 441-467.Google Search
11 
Kani, G. N. J. (1966) Basic Facts Concerning Shear Failure. ACI Structural Journal 63(32), 675-691.Google Search
12 
KBC (2016) Korean Building Code and Commenatary. Korea Archtecural Institute. 1-1221. (In Korean)Google Search
13 
KCI (2012) Concrete Design Code-2012. Korea Concrete Institute. 1-342. (In Korean)Google Search
14 
Kim, S. M., Jang, T. Y., and Kin, S. S. (2009) Structural Perfor-mance Tests of Two-Way Void Slabs. Journal of the Korea Architectural Institute 25(8), 35-42. (In Korean)Google Search
15 
KS B 0801 (2007) Test pieces for tensile test for metallic materials. Korean Agency for Technology and Standards. 1-14. (In Korean)Google Search
16 
KS B 0802 (2008) Method of tensile test for metallic materials. Korean Agency for Technology and Standards. 1-6. (In Korean)Google Search
17 
KS D 3504 (2016) Steel Bars for Concrete Reinforcement. Korean Agency for Technology and Standards. 1-31. (In Korean)Google Search
18 
KS D 3552 (2014) Low Carbon Steel Wires. Korean Agency for Technology and Standards. 1-17. (In Korean)Google Search
19 
KS F 2405 (2010) Standard Test Method of Test for Compressive Strength of Concrete. Korean Agency for Technology and Standards. 1-6. (In Korean)Google Search
20 
Lee, J. E., Kim, B. Y., and Jung, B. J. (2014) Evaluation of Structural and Economic Feasibility for Removal Steel Plate Eco Deck Plate. Journal of the Korea Architectural Institute 30(9), 3-10. (In Korean)Google Search
21 
Lee, J. E., Lee, Y. J., Lee, S. K., and Jung, B. J. (2013) An Expe-rimental Study for the Evaluation of the Structural Behavior Eco Deck Plate. Journal of the Korea Institute for Structural Maintenance and Inspection 17(5), 40-48. (In Korean)Google Search
22 
Leondardt, F. (1965) Reducing the Shear Reinfor-ce-ment in Reinforced Concrete Beams and Slabs. Magazine of Cocrete Research 17(53), 187-198.Google Search
23 
Zsutty, T. C. (1968) Beam Shear Strength Prediction by Analysis of Existing Data. ACI Structural Journal, Proceedings 65(11).Google Search