Mobile QR Code QR CODE
Export citation EndNote
1 
Broomfield, J. P. (1997) Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E.&F.N. Spon, London, 1-15.DOI
2 
Copeland, L. E. and Kantro, D. L. (1969) Hydration of Portland cement, 5th International Symposium on the Chemistry of Cement, Tokyo 7-11 October 1969. Japan, Tokyo.: Cement Association of Japan 378-420.Google Search
3 
De Schutter, G. (2011) Effect of limestone filler as mineral addition in self-compacting concrete, 36th Conference on OUR WORLD IN CONCRETE & STRUCTURES, 14-16 August 2011. Singapore, Singapore.: Ghent University, 49-54.Google Search
4 
Escalante-Garcia, J. I. and Sharp, J. H. (1998) Effect of Temperature on the Hydration of the Main Clinker Phases in Portland Cements: Part II. Blended Cements. Cement and Concrete Research 28, 1259-1274.DOI
5 
Han, C. G. and Kim, J. B. (2011) Evaluation on the Durability of High Performance Concrete using High Blaine Blast Furnace Slag Powder. Journal of the Architectural Institute of Korea Structure and Construction 27(11), 135-142. (In Korean)Google Search
6 
Hester, D., Mcnally, C., and Richardson, M. G. (2005) Study of Influence of Slag Alkali Level on the Alkali-silica Reactivity of Slag Concrete, Construction and Building Materials 19(9), 661-665.DOI
7 
Jung, J. Y., Jang, S. Y., Choi, Y. C., Jung, S. H., and Kim, S. I. (2015) Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic reaction of High-Strength High-Volume GGBFS Blended Cement Pastes. Journal of the Korea Concrete Institute 27(2), 115-125. (In Korean)DOI
8 
Jung, Y. S. and Bae, S. H. (2001) Durability Design and Countermeasures Against Chloride-Induced Corrosion of Concrete Structures. Magazine of the Korea Concrete Institute 13(6), 26-35. (In Korean)Google Search
9 
Kim, M. H., Kim, K. Y., Cho, B. S., Na, C. S., and Kim, Y. D. (2007) An Experimental Study on the Engineering Property and Durability of Concrete Using Ground Granulated Blast Furnace Slag. Journal of the Korea Concrete Institute 23(3), 61-68. (In Korean)Google Search
10 
Kim, T. S., Jung, S. H., Choi, Y. C., and Song, H. W. (2009) An Experimental Study on Relation between Chloride Diffusivity and Microstructural Characteristics for GGBS Concrete. Journal of the Korea Concrete Institute 21(5), 639-647. (In Korean)DOI
11 
Lee, S. H., Kim, W. K., and Kang, S. H. (2012) Hydration Mechanism of Ground Granulated Blast Furnace Slag. Magazine of the Korea Concrete Institute 24(6), 31-34.Google Search
12 
Lee, S. T. (2014) Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete. Journal of the Korean Society of Civil Engineers 34(4), 1095-1104. (In Korean)DOI
13 
Lee. H. H. and Kwon, S. J. (2013) Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag considering Fineness and Replacement Ratio. Journal of the Korean Recycled Construction Resources Institute 1(1), 26-34. (In Korean)DOI
14 
Leng, F., Feng, N., and Lu, X. (2000) An Experiment Study on the Properties of Resistance to Diffusion of Chloride Ions of Fly Ash and Blast Furnace Slag Concrete, Cement and Concrete Research 30, 989-992.DOI
15 
Narayanan, N. (2008) Quantifying the Effects of Hydration Enhancement and Dilution in Cement Pastes Containing Coarse Glass Powder. Journal of Advanced Concrete Technology 6(3), 397-408.DOI
16 
Neville, A. M. (1995) Properties of concrete, USA, New Jersey: WILEY. 482-490.Google Search
17 
NT BUILD 492. (1999) Chloride Migration Coefficient from Non-Steady-State Migration Experiments, Denmark, Slettetoften: NORDTEST. 1-11.Google Search
18 
Park, J. S., Yoon, Y. S., and Kwon, S. J. (2017) Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages. Journal of the Korea Concrete Institute 29(3), 307-314. (In Korean)DOI
19 
RILEM. (1994) Durability Design of Concrete Structures, RILEM Technical Committee. No. 130-CSL, 28-52.Google Search
20 
Samsung Engineering Research Institute: SERI (2003), Evaluation of chloride ion diffusion characteristics of high durability concrete.Google Search
21 
Song, H. W. and Kwon, S. J. (2009) Evaluations of Chloride Penetration in High Performance Concrete Using Neural Network Algorithm and Micro Pore Structure. Cement and Concrete Research 39(9), 814-824.DOI
22 
Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K. (2005) A Study on Analytical Technique of Chloride Diffusion Considering Characteristics of Mixture Design for High Performance Concrete Using Mineral Admixture. Journal of Korea Society of Civil Engineers 25(1a), 213-223. (In Korean)Google Search
23 
Tang, L. (1996) Electrically Accelerated Methods for Determining Chloride Diffusivity in Concrete-current Development. Magazine of Concrete Research 48(176), 173-179.DOI
24 
Tang, L. and Nilsson, L. O. (1992) Rapid Determination of the Chloride Diffusivity in Concrete by applying an Electrical Field. ACI Materials Journal 89(1), 49-53.Google Search
25 
Thomas M. D. A. and Bamforth, P. B. (1999) Modeling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag. Cement and Concrete Research 29(4), 487-495.DOI
26 
Thomas, M. D. A. and Bentz, E. C. (2002) Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 manual, SFA, 12-56.Google Search