Mobile QR Code QR CODE
Export citation EndNote

References

1 
Aligizaki K. K., 2005, Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirement. New York: CRC Press., pp. 71-73Google Search
2 
Berrocal C. G., Lundgren K., Löfgren I., 2016, Corrosion of Steel Bars Embedded in Fibre Reinforced Concrete Under Chloride Attack: State of the Art, Cement and Concrete Research, Vol. 80, pp. 69-85DOI
3 
Dhir R., El-Mohr M., Dyer T., 1996, Chloride Binding in GGBS Concrete, Cement and Concrete Research, Vol. 26, No. 12, pp. 1767-1773DOI
4 
El-Dieb A., Hooton R., 1994, Evaluation of the Katz- Thompson Model for Estimating the Water Permeability of Cement-based Materials from Mercury Intrusion Porosimetry Data, Cement and Concrete Research, Vol. 24, No. 3, pp. 443-455DOI
5 
Eskandari-Naddaf H., Kazemi R., 2018, Experimental Evaluation of the Effect of Mix Design Ratios on Compressive Strength of Cement Mortars Containing Cement Strength Class 42.5 and 52.5 MPa, Procedia Manufacturing, Vol. 22, pp. 392-398DOI
6 
Farahani A., Taghaddos H., Shekarchi M., 2015, Prediction of Long-term Chloride Diffusion in Silica Fume Concrete in a Marine Environment, Cement and Concrete Composites, Vol. 59, pp. 10-17DOI
7 
Frazão C., Camões A., Barros J., Gonçalves D., 2015, Durability of Steel Fiber Reinforced Self-compacting Concrete, Construction and Building Materials, Vol. 80, pp. 155-166DOI
8 
Glass G., Buenfeld N., 2000, The Influence of Chloride Binding on the Chloride Induced Corrosion Risk in Reinforced Concrete, Corrosion Science, Vol. 42, No. 2, pp. 329-344DOI
9 
Halamickova P., Detwiler R. J., Bentz D. P., Garboczi E. J., 1995, Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter, Cement and Concrete Research, Vol. 25, No. 4, pp. 790-802DOI
10 
Hwang J. P., Kim M., Ann K. Y., 2015, Porosity Generation Arising From Steel Fibre in Concrete, Construction and Building Materials, Vol. 94, No. , pp. 433-436DOI
11 
Kim B. I., 2010, Transport Coefficients an Effect of Corrosion Resistance for SFRC, Journal of the Korea Concrete Institute, Vol. 22, No. 6, pp. 867-873 (In Korean)DOI
12 
Korea Agency for Technology and Standards (KATS) , 2014, Steel fibers for concrete (KS F 2564), Seoul: Korean Standards Association. (In Korean)Google Search
13 
Luping T., Nilsson L.-O., 1993, Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars, Cement and Concrete Research, Vol. 23, No. 2, pp. 247-253DOI
14 
Marcos-Meson V., Michel A., Solgaard A., Fischer G., Edvardsen C., Skovhus T. L., 2017, Corrosion Resistance of Steel Fibre Reinforced Concrete-A Literature Review, Cement and Concrete Research, Vol. 103, No. , pp. 1-20DOI
15 
NT BUILD 443 , 1997, Concrete, hardened: Accelerated chloride penetration, Finland: NORDTESTGoogle Search
16 
Oner A., Akyuz S., 2007, An Experimental Study on Optimum Usage of GGBS for the Compressive Strength of concrete, Cement and Concrete Composites, Vol. 29, No. 6, pp. 505-514DOI
17 
Pack S.-W., Jung M.-S., Song H.-W., Kim S.-H., Ann K. Y., 2010, Prediction of Time Dependent Chloride Transport in Concrete Structures Exposed to a Marine Environment, Cement and Concrete Research, Vol. 40, No. 2, pp. 302-312DOI
18 
Petcherdchoo A., 2013, Time Dependent Models of Apparent Diffusion Coefficient and Surface Chloride for Chloride Transport in Fly Ash Concrete, Construction and Building Materials, Vol. 38, No. , pp. 497-507DOI
19 
Thomas M. D., Bamforth P. B., 1999, Modelling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag, Cement and Concrete Research, Vol. 29, No. 4, pp. 487-495DOI