Mobile QR Code QR CODE
Export citation EndNote

References

1 
Abrams M. S., 1971, Compressive Strength of Concrete at Temperatures to 1600F, ACI Special Publication, Vol. 25, pp. 33-58Google Search
2 
Andiç-Çakır Ö., Hızal S., 2012, Influence of Elevated Temperatures on the Mechanical Properties and Microstructure of Self Consolidating Lightweight Aggregate Concrete, Construction and Building Materials, Vol. 34, pp. 575-583DOI
3 
Behnood A., Ghandehari M., 2009, Comparison of Compressive and Splitting Tensile Strength of High-strength Concrete with and without Polypropylene Fibers Heated to High Temperatures, Fire Safety Journal, Vol. 44, No. 8, pp. 1015-1022DOI
4 
Chang Y. F., Chen Y. H., Sheu M. S., Yao G. C., 2006, Residual Stress-strain Relationship for Concrete after Exposure to High Temperatures, Cement and Concrete Research, Vol. 36, No. 10, pp. 1999-2005DOI
5 
Chen B., Liu J., 2004, Residual Strength of Hybrid-fiber- reinforced High-strength Concrete after Exposure to High Temperatures, Cement and Concrete Research, Vol. 34, No. 6, pp. 1065-1069DOI
6 
Choe G., Kim G., Yoon M., Hwang E., Nam J., Guncunski N., 2019, Effect of Moisture Migration and Water Vapor Pressure Build-up with the Heating Rate on Concrete Spalling Type, Cement and Concrete Research, Vol. 116, pp. 1-10DOI
7 
Choe G., Yoon M. H., Lee T., Lee S.-H., Kim G., 2013, Evaluation of Properties of 80, 130, 180 MPa High Strength Concrete at High Temperature with Heating and Loading, Journal of the Korea Concrete Institute, Vol. 25, No. 6, pp. 613-620DOI
8 
Choi S. J., Hong B. T., Lee S. J., Won J. P., 2014, Shrinkage and Corrosion Resistance of Amorphous Metallic- fiber-reinforced Cement Composites, Composite Structures, Vol. 107, pp. 537-543DOI
9 
Ding Y., Zhang C., Cao M., Zhang Y., Azevedo C., 2016, Influence of Different Fibers on the Change of Pore Pressure of Self-consolidating Concrete Exposed to Fire, Construction and Building Materials, Vol. 113, pp. 456-469DOI
10 
European Committee for Standardization (CEN) , 2004, Eurocode 2: Design of Concrete Structures - Part 1-2: General Rules - Structural fire design (BS EN 1992-1-2:2004)., London, UK; British Standards Institute (BSI)Google Search
11 
Franssen J. M., Dotreppe J. C., 2003, Fire Tests and Calculation Methods for Circular Concrete Columns, Fire Technology, Vol. 39, No. 1, pp. 89-97DOI
12 
KCI , 2009, Concrete Design Code and Commentary, Seoul, Korea; Kimoondang Publishing Company. Korea Concrete Institute (KCI). (In Korean)Google Search
13 
Khoury G. A., 2000, Effect of Fire on Concrete and Concrete Structures, Progress in Structural Engineering and Materials, Vol. 2, No. 4, pp. 429-447DOI
14 
Korea Agency for Technology and Standards (KATS) , 2010, Standard Test Method for Compressive Strength of Concrete (KS F 2405), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
15 
Korea Agency for Technology and Standards (KATS) , 2014, Standard Test Method for Making and Curing Concrete Specimens (KS F 2403), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
16 
Korea Agency for Technology and Standards (KATS) , 2015, Method of Test for Slump Flow of Fresh Concrete (KS F 2594), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
17 
Korea Agency for Technology and Standards (KATS) , 2016, Standard Test Method for Unit Weight and Air Content (Gravimetric) of Fresh Concrete (KS F 2409), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
18 
Korea Agency for Technology and Standards (KATS) , 2017, Standard test Method for Static Modulus of Elasticity and Poisson’s Ratio in Compression of Cylindrical Concrete Specimens (KS F 2438), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
19 
Liu X., Ye G., De Schutter G., Yuan Y., Taerwe L., 2008, On the Mechanism of Polypropylene Fibres in Preventing Fire Spalling in Self-compacting and High-performance Cement Paste, Cement and Concrete Research, Vol. 38, No. 4, pp. 487-499DOI
20 
Malhotra H. L., 1956, The Effect of Temperature on the Compressive Strength of Concrete, Magazine of Concrete Research, Vol. 8, No. 23, pp. 85-94DOI
21 
Nassif A. Y., Burley E., Ridgen S., 1995, A New Quantitative Method of Assessing Fire Damage to Concrete Structures, Magazine of Concrete Research, Vol. 47, No. 172, pp. 271-278DOI
22 
Phan L. T., 1996, Fire Performance of High-strength Concrete: A Report of the State-of-the art, Building and Fire Research Laboratory, National Institute of Standards and Technology.Google Search
23 
Phan L. T., 2002, High-strength Concrete at High Temperature-an Overview, In 6th International Symposium on Utilization of High Strength/High Performance Concrete. Leipzig , Germany, pp. 501-518Google Search
24 
Phan L. T., Carino N. J., 2001, Mechanical Properties of High-strength Concrete at Elevated Temperatures (No. NIST Interagency/Internal Report (NISTIR)-6726), Gaithersburg, MD; National Institute of Standards and Technology (NIST)Google Search
25 
Schneider U., Schwesinger P., Debicki G., Diederichs U., Felicetti R., Franssen J.M., Phan L., 2000, RILEM Recommendations: Part 4: Tensile strength for service and accident conditions, Materials and Structructures, Vol. 33, pp. 219-223Google Search
26 
Schneider U., 1988, Concrete at High Temperatures a General Review, Fire Safety Journal, Vol. 13, No. 1, pp. 55-68DOI
27 
Schneider U., Schneider M., 2009, An Advanced Transient Concrete Model for the Determination of Restraint in Concrete Structures Subjected to Fire, Journal of Advanced Concrete Technology, Vol. 7, No. 3, pp. 403-413DOI
28 
Seo M. S., Kim H. S., Truong G. T., Choi K. K., 2017, Seismic Behaviors of Thin Slender Structural Walls Reinforced with Amorphous Metallic Fibers, Engineering Structures, Vol. 152, pp. 102-115DOI
29 
Vieira J. P. B., Correia J. R., De Brito J., 2011, Post-fire Residual Mechanical Properties of Concrete Made with Recycled Concrete Coarse Aggregates, Cement and Concrete Research, Vol. 41, No. 5, pp. 533-541DOI
30 
Won J. P., Hong B. T., Lee S. J., Choi S. J., 2013, Bonding Properties of Amorphous Micro-steel Fibre-reinforced Cementitious Composites, Composite Structures, Vol. 102, pp. 101-109DOI
31 
Yang J. M., Shin H. O., Yoo D. Y., 2017, Benefits of Using Amorphous Metallic Fibers in Concrete Pavement for Long-term Performance, Archives of Civil and Mechanical Engineering, Vol. 17, No. 4, pp. 750-760DOI
32 
Yermak N., Pliya P., Beaucour A. L., Simon A., Noumowé A., 2017, Influence of Steel and/or Polypropylene Fibres on the Behaviour of Concrete at High Temperature: Spalling, Transfer and Mechanical Properties, Construction and Building Materials, Vol. 132, pp. 240-250DOI
33 
Yoo D. Y., Banthia N., Yang J. M., Yoon Y. S., 2016, Size Effect in Normal-and High-strength Amorphous Metallic and Steel Fiber Reinforced Concrete Beams, Construction and Building Materials, Vol. 121, pp. 676-685DOI
34 
Zheng W., Li H., Wang Y., 2012, Compressive Behaviour of Hybrid Fiber-reinforced Reactive Powder Concrete after High Temperature, Materials and Design, Vol. 41, pp. 403-409DOI