Mobile QR Code QR CODE
Export citation EndNote

References

1 
Ahn Y.-H., Kim S.-Y., 2017, Construction Industry Transition with the 4th Industrial Revolution Technology., Journal of the Korea Institute of Building Construction, Vol. 17, No. 2, pp. 18-22Google Search
2 
Bos F. P., Ahmed Z. Y., Wolfs R. J., Salet T. A., 2018, 3D Printing Concrete with Reinforcement. In High Tech Concrete: Where Technology and Engineering Meet., 12-14 June 2017. Maastricht, Netherlands; Springer, Cham., pp. 2484-2493Google Search
3 
Gaudillière N., Duballet R., Bouyssou C., Mallet A., Roux P., Zakeri M., Dirrenberger J., 2019, Building Applications Using Lost Formworks Obtained Through Large-scale Additive Manufacturing of Ultra-high-performance Concrete, In 3D Concrete Printing Technology. UK, Oxford: Butterworth- Heinemann, pp. 37-58DOI
4 
Hasan M. N., Vatani M., Chandy A., Choi J. W., 2016, Experimental and Numerical Analysis of Filament Front Deformation for Direct-print, Journal of Manufacturing Science and Engineering, Vol. 138, No. 1, pp. 011003DOI
5 
Jeong H., Han S. J., Choi S. H., Lee Y. J., Yi S. T., Kim K. S., 2019, Rheological Property Criteria for Buildable 3D Printing Concrete, Materials, Vol. 12, No. 4, pp. 657DOI
6 
Jung K. H., Jung J.-Y., Jung S.-J., 2002, Prospect of Formwork Work, Journal of the Kaorea Institute of Building Construction, Vol. 2, No. 4, pp. 64-68DOI
7 
Kazemian A., Yuan X., Cochran E., Khoshnevis B., 2017, Cementitious Materials for Construction-scale 3D Printing: Laboratory Testing of Fresh Printing Mixture, Construction and Building Materials, Vol. 145, pp. 639-647DOI
8 
Korea Agency for Technology, Standards (KATS), 2010, Standard Test Method for Compressive Strength of Concrete (KS F 2405), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
9 
Korea Agency for Technology, Standards (KATS), 2017, Standard Test Method for Concrete Slump (KS F 2402), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
10 
Le T. T., Austin S. A., Lim S., Buswell R. A., Gibb A. G. F., Thorpe T., 2012a, Mix Design and Fresh Properties for High-performance Printing Concrete, Materials and Structures, Vol. 45, No. 8, pp. 1221-1232DOI
11 
Le T. T., Austin S. A., Lim S., Buswell R. A., Law R., Gibb A. G. F., Thorpe T., 2012b, Hardened Properties of High-performance Printing Concrete, Cement and Concrete Research, Vol. 42, No. 3, pp. 558-566DOI
12 
Lee E.-Y., Kim Y.-S., 2014, An Analysis and Improvement of Free Form Building’s Construction Productivity - Focused on Exposed Concrete Work -, Korean Journal of Construction Engineering and Management, Vol. 15, No. 3, pp. 38-46DOI
13 
Ma G., Li Z., Li W., 2018, Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing, Construction and Building Materials, Vol. 162, pp. 613-627DOI
14 
Malaeb Z., Hachem H., Tourbah A., Maalouf T., El Zarwi N., Hamzeh F., 2015, 3D Concrete Printing: Machine and Mix Design, International Journal of Civil Engineering, Vol. 6, No. 6, pp. 14-22Google Search
15 
Min C.-S., 2013, Reinforced Concrete Design. Korea, Seoul: Goomibook, (In Korean), pp. 3-10Google Search
16 
Perrot A., Rangeard D., Pierre A., 2016, Structural Built-up of Cement-based Materials Used for 3D-printing Extrusion Techniques, Materials and Structures, Vol. 49, No. 4, pp. 1213-1220Google Search
17 
Petit J. Y., Wirquin E., Vanhove Y., Khayat K., 2007, Yield Stress and Viscosity Equations for Mortars and Self- consolidating Concrete, Cement and Concrete Research, Vol. 37, No. 5, pp. 655-670DOI
18 
Roussel N., 2018, Rheological Requirements for Printable Concretes, Cement and Concrete Research, Vol. 112, pp. 76-85DOI