Mobile QR Code QR CODE
Export citation EndNote

References

1 
Brown P. T., 2013, Climate Change Blues: Sustaining Village Life In Tonga, Te Kaharoa - The e-Journal on Indigenous Pacific Issues, Vol. 6, No. 1, pp. 260-305Google Search
2 
Azhari F., 2008, Cement-based Sensors for Structural Health Monitoring, Doctoral Dissertation, University of British Columbia, Vancouver, Canada.DOI
3 
Choi W. C., Yun H. D., Cho C. G., Feo L., 2014, Attempts to Apply High Performance Fiber-reinforced Cement Composite (HPFRCC) to Infrastructures in South Korea, Composite Structures, Vol. 109, No. 1, pp. 211-223DOI
4 
Dong W., Li W., Tao Z., Wang K., 2019, Piezoresistive Properties of Cement-based Sensors: Review and Perspective, Construction and Building Materials, Vol. 203, pp. 146-163DOI
5 
Han B., Yu X., Ou J., 2014, Self-sensing Concrete in Smart Structures, Oxford, UK; Butterworth-Heinemann, Vol. 398Google Search
6 
Hardy D. K., Fadden M. F., Khattak M. J., Khattab A., 2016, Development and Characterization of Self-sensing CNF HPFRCC, Materials and Structures, Vol. 49, No. 12, pp. 5327-5342DOI
7 
Hou T. C., Lynch J. P., 2005, Conductivity-based Strain Monitoring and Damage Characterization of Fiber Rein-forced Cementitious Structural Components, In Proceedings of Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 17 May 2005, San Diego, California; 5765, pp. 419-430DOI
8 
2017a, Korea Agency for Technology and Standards (KATS) Flow Table for Use in Tests of Hydraulic Cement (KS L 5111), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
9 
2017b, Korea Agency for Technology and Standards (KATS) Testing Method for Compressive Strength of Hydraulic Cement Mortars (KS L 5105), Seoul, Korea: Korea Standard Association (KSA). (In Korean)Google Search
10 
Morsy M. S., Alsayed S. H., Aqel M., 2011, Hybrid Effect of Carbon Nanotube and Nano-clay on Physico-mechanical Properties of Cement Mortar, Construction and Building Materials, Vol. 25, No. 1, pp. 145-149DOI
11 
Pisello A. L., D’Alessandro A., Sambuco S., Rallini M., Ubertini F., Asdrubali F., Cotana F., 2017, Multi-purpose Experimental Characterization of Smart Nanocomposite Cement-based Materials for Thermal-energy Efficiency and Strain-sensing Capability, Solar Energy Materials and Solar Cells, Vol. 161, pp. 77-88DOI
12 
Ranade R., Zhang J., Lynch J. P., Li V. C., 2014, Influence of Micro-cracking on the Composite Resistivity of Engineered Cementitious Composites, Cement and Concrete Research, Vol. 58, pp. 1-12DOI
13 
Teomete E., Kocyigit O. I., 2013, Tensile Strain Sensitivity of Steel Fiber Reinforced Cement Matrix Composites Tested by Split Tensile Test, Construction and Building Materials, Vol. 47, pp. 962-968DOI
14 
Wen S., Chung D. D. L., 2003, A Comparative Study of Steel-and Carbon-fibre Cement as Piezoresistive Strain Sensors, Advances in Cement Research, Vol. 15, No. 3, pp. 119-128DOI
15 
Xu S., Liu J., Li Q., 2015, Mechanical Properties and Microstructure of Multi-walled Carbon Nanotube-reinforced Cement Paste, Construction and Building Materials, Vol. 76, pp. 16-23DOI
16 
Yoo D. Y., Kim S., Lee S. H., 2018, Self-sensing Capability of Ultra-high-performance Concrete Containing Steel Fibers and Carbon Nanotubes under Tension, Sensors and Actuators A: Physical, Vol. 276, pp. 125-136DOI
17 
Yoo D. Y., You I., Lee S. J., 2017, Electrical Properties of Cement-based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers, Sensors, Vol. 17, No. 5, pp. 1064DOI