Mobile QR Code QR CODE
Export citation EndNote

References

1 
ASTM C 618 , 2015, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, West Conshohocken, PA, Vol. ASTM InternationalGoogle Search
2 
Athanasopoulos N., Sikoutris D., Panidis T., Kostopoulos V., 2011, Numerical Investigation and Experimental Verification of the Joule Heating Effect of Polyacrylonitrile-Based Carbon Fiber Tows under High Vacuum Conditions, Journal of Composite Materials, Vol. 46, No. 18, pp. 2153-2165DOI
3 
Barreira E., Freitas V. P., 2007, Evaluation of Building Materials Using Infrared Thermography, Construction and Building Materials, Vol. 21, No. 1, pp. 218-224DOI
4 
Bharj J., Singh S., Chander S., Singh R., 2014, Experimental Study on Compressive Strength of Cement-CNT Composite Paste, Indian Journal of Pure & Applied Physics, Vol. 52, pp. 35-38Google Search
5 
Bonard J. M., Croci M., Klinke C., Kurt R., Noury O., Weiss N., 2002, Carbon Nanotube Films as Electron Field Emitters, Carbon, Vol. 40, pp. 1715-1728DOI
6 
Chaipanich A., Nochaiya T., Wongkeo W., Torkittikul P., 2010, Compressive Strength and Microstructure of Carbon Nanotubes-Fly Ash Cement Composites, Materials Science and Engineering A, Vol. 527, pp. 1063-1067DOI
7 
Choi H., Kang D., Seo G. S., Chung W., 2015, Effect of Some Parameters on the Compressive Strength of MWCNT- Cement Composites, Advances in Materials Science and Engineering, Vol. Article 340808DOI
8 
Chung D. D. L., 2004, Self-Heating Structural Materials, Smart Materials and Structures, Vol. 13, No. 3, pp. 562-565Google Search
9 
Ci L., Wei B., Xu C., Liang J., Wu D., Xie S., Zhou W., Li Y., Liu Z., Tang D., 2001, Crystallization Behavior of the Amorphous Carbon Nanotubes Prepared by the CVD Method, Journal of Crystal Growth, Vol. 233, pp. 823-828DOI
10 
Collins F., Lambert J., Duan W. H., 2012, The Influences of Admixtures on the Dispersion, Workability, and Strength of Carbon Nanotube-OPC Paste Mixtures, Cement and Concrete Composites, Vol. 34, No. 2, pp. 201-207DOI
11 
Cromwell J. R., Harries K. A., Shahrooz B. M., 2011, Environmental Durability of Externally Bonded FRP Materials Intended for Repair of Concrete Structures, Construction and Building Materials, Vol. 25, No. , pp. 2528-2539DOI
12 
Han B., Yu X., Kwon E., , A Self-Sensing Carbon Nanotube/Cement Composite for Traffic Monitoring, Nanotechnology 20, Vol. Article 445501Google Search
13 
Isfahani F. T., Li W., Redaelli E., 2016, Dispersion of Multi-Walled Carbon Nanotubes and Its Effects on the Properties of Cement Composites, Cement and Concrete Composites, Vol. 74, pp. 154-163DOI
14 
Jung M., Eun K. Y., Lee J. K., Baik Y. J., Lee K. R., Park J. W., 2001, Growth of Carbon Nanotubes by Chemical Vapor Deposition, Diamond and Related Materials, Vol. 10, pp. 1235-1240DOI
15 
Kim G. M., Naeem F., Kim H. K., Lee H. K., 2016a, Heating and Heat-Dependent Mechanical Characteristics of CNT-Embedded Cementitious Composites, Composite Structures, Vol. 136, pp. 162-170DOI
16 
Kim G. M., Yang B. J., Ryu G. U., Lee H. K., 2016b, The Electrically Conductive Carbon Nanotube (CNT)/Cement Composites for Accelerated Curing and Thermal Cracking Reduction, composite structures, Vol. 158, pp. 20-29DOI
17 
Kim H. K., Nam I. W., Lee H. K., 2014, Enhanced Effect of Carbon Nanotube on Mechanical and Electrical Properties of Cement Composites by Incorporation of Silica Fume, Composite Structures, Vol. 107, pp. 60-69DOI
18 
Korea Agency for Technology and Standards (KATS) , , Methods of Testing Cements-Determination of Strength (KS L ISO679), Korea Standard Association (KSA), pp. 1-16Google Search
19 
Lee H., Kang D., Kim J., Choi K., Chung W., 2019, Void Detection of Cementitious Grout Composite Using Single- Walled and Multi-Walled Carbon Nanotubes, Cement and Concrete Composites, Vol. 95, pp. 237-246DOI
20 
Lee H., Park S., Cho S., Chung W., 2020a, Correlation Analysis of Heating Performance and Electrical Energy of Multi-Walled Carbon Nanotubes Cementitious Composites at Sub-Zero Temperatures, Composite Structures 238, Vol. Article 111977DOI
21 
Lee H., Yu W., Loh K. J., Chung W., 2020b, Self-Heating and Electrical Performance of Carbon Nanotube-Enhanced Cement Composites, Construction and Building Materials 250, Vol. Article 118838DOI
22 
Li G. Y., Wang P. M., Zhao X., 2005, Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes, Carbon, Vol. 43, No. 6, pp. 1239-1245DOI
23 
Li H., Zhang Q., Xiao H., 2013, Self-Deicing Road System with a CNFP High-Efficiency Thermal Source and MWCNT/Cement-Based High-Thermal Conductive Composites, Cold Regions Science and Technology, Vol. 86, pp. 22-35DOI
24 
Morsy M. S., Alsayed S. H., Aqel M., 2011, Hybrid Effect of Carbon Nanotube and Nano-Clay on Physico-Mechanical Properties of Cement Mortar, Construction and Building Materials, Vol. 25, pp. 145-149DOI
25 
Musso S., Tulliani J. M., Ferro G., Tagliaferro A., 2009, Influence of Carbon Nanotubes Structure on the Mechanical Behavior of Cement Composites, Composites Science and Technology 69, pp. 1985-1990DOI
26 
Nam I. W., Kim H. K., Lee H. K., 2012, Influence of Silica Fume Additions on Electromagnetic Interference Shielding Effectiveness of Multi-Walled Carbon Nanotube/Cement Composites, Construction and Building Materials 30, pp. 480-487DOI
27 
Oh S., Oh K., Jung S., Chung W., Yoo S., 2017, Effects of CNT Additions on Mechanical Properties and Microstructures of Cement, Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 21, No. 6, pp. 162-168DOI
28 
Paredes J. I., Burghard M., 2004, Dispersions of Individual Single-Walled Carbon Nanotubes of High Length, Langmuir, Vol. 20, No. 12, pp. 5149-5152Google Search
29 
Ruoff R. S., Lorents D. C., 1995, Mechanical and Thermal Properties of Carbon Nanotubes, Carbon, Vol. 33, No. 7, pp. 925-930DOI
30 
Salvetat J. P., Bonard J. M., Thomson N. H., Kulik A. J., Forró L., Benoit W., Zuppiroli L., 1999, Mechanical Properties of Carbon Nanotubes, Applied Physics A, Vol. 69, No. 3, pp. 255-260DOI
31 
Sellevold E. J., Bjøntegaard Ø., 2006, Coefficient of Thermal Expansion of Cement Paste and Concrete: Mechanisms of Moisture Interaction, Materials and Structures 39, pp. 809-815DOI
32 
Siddique R., Mehta A., 2014, Effect of Carbon Nanotubes on Properties of Cement Mortars, Construction and Building Materials 50, pp. 116-129DOI
33 
Snellings R., Chwast J., Cizer O., De Belie N., Dhandapani Y., Durdzinski P., Elsen J., Haufe J., Hooton D., Patapy C., Santhanam M., Scrivener K., Snoeck D., Steger L., Tonbo S., Vollpracht A., Winnefeld F., Lothenbach B., 2018, Report of TC 238-SCM: Hydration Stoppage Methods for Phase Assemblage Studies of Blended Cements-Results of a Round Robin Test, Materials and Structures 51, Vol. Article 111DOI
34 
Tanaka K., Sato T., Yamabe T., Okahara K., Uchida K., Yumura M., Niino H., Ohshima S., Kuriki Y., Yase K., Ikazaki F., 1994, Electronic Properties of Carbon Nanotube, Chemical Physics Letters, Vol. 223, No. 1, pp. 65-68DOI
35 
Wang Q., Cui X., Wang J., Li S., Lv C., Dong Y., 2017, Effect of Fly Ash on Rheological Properties of Graphene Oxide Cement Paste, Construction and Building Materials, Vol. 138, pp. 35-44DOI
36 
Wang S., Wen S., Chung D. D. L., 2004, Resistance Heating Using Electrically Conductive Cements, Advances in Cement Research, Vol. 16, No. 4, pp. 161-166DOI
37 
Xu S., Liu J., Li Q., 2015, Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotube-Reinforced Cement Paste, Construction and Building Materials, Vol. 76, No. 1, pp. 16-23DOI
38 
Yen T., Hsu T. H., Liu Y. W., Chen S. H., 2007, Influence of Class F Fly Ash on the Abrasion-Erosion Resistance of High-Strength Concrete, Construction and Building Materials, Vol. 21, pp. 458-463DOI
39 
Zhang Q., Li H., 2011, Experimental Investigation on the Ice/Snow-Melting Performance of CNFP & MWCNT/Cement- Based Deicing System, In: The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology, Vol. dalian, No. china, pp. 25-26Google Search